Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph P. Connor is active.

Publication


Featured researches published by Joseph P. Connor.


Cancer Research | 2007

Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers

Dohun Pyeon; Michael A. Newton; Paul F. Lambert; Johan A. den Boon; Srikumar Sengupta; Carmen J. Marsit; Craig D. Woodworth; Joseph P. Connor; Thomas H. Haugen; Elaine M. Smith; Karl T. Kelsey; Lubomir P. Turek; Paul Ahlquist

Human papillomaviruses (HPV) are associated with nearly all cervical cancers, 20% to 30% of head and neck cancers (HNC), and other cancers. Because HNCs also arise in HPV-negative patients, this type of cancer provides unique opportunities to define similarities and differences of HPV-positive versus HPV-negative cancers arising in the same tissue. Here, we describe genome-wide expression profiling of 84 HNCs, cervical cancers, and site-matched normal epithelial samples in which we used laser capture microdissection to enrich samples for tumor-derived versus normal epithelial cells. This analysis revealed that HPV(+) HNCs and cervical cancers differed in their patterns of gene expression yet shared many changes compared with HPV(-) HNCs. Some of these shared changes were predicted, but many others were not. Notably, HPV(+) HNCs and cervical cancers were found to be up-regulated in their expression of a distinct and larger subset of cell cycle genes than that observed in HPV(-) HNC. Moreover, HPV(+) cancers overexpressed testis-specific genes that are normally expressed only in meiotic cells. Many, although not all, of the hallmark differences between HPV(+) HNC and HPV(-) HNC were a direct consequence of HPV and in particular the viral E6 and E7 oncogenes. This included a novel association of HPV oncogenes with testis-specific gene expression. These findings in primary human tumors provide novel biomarkers for early detection of HPV(+) and HPV(-) cancers, and emphasize the potential value of targeting E6 and E7 function, alone or combined with radiation and/or traditional chemotherapy, in the treatment of HPV(+) cancers.


Molecular Cancer | 2006

Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors

Jennifer A. A. Gubbels; Jennifer A. Belisle; Masanori Onda; Claudine Rancourt; Martine Migneault; Mitchell Ho; Tapan K. Bera; Joseph P. Connor; Bangalore K. Sathyanarayana; Byungkook Lee; Ira Pastan; Manish S. Patankar

BackgroundThe mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the MUC16-mesothelin interaction in facilitating cell-cell binding under conditions that mimic the peritoneal environment.ResultsIn this study we utilize recombinant-Fc tagged human mesothelin to measure the binding kinetics of this glycoprotein to MUC16 expressed on the ovarian tumor cell line OVCAR-3. OVCAR-3 derived sublines that did not express MUC16 showed no affinity for mesothelin. In a flow cytometry-based assay mesothelin binds with very high affinity to the MUC16 on the OVCAR-3 cells with an apparent Kd of 5–10 nM. Maximum interaction occurs within 5 mins of incubation of the recombinant mesothelin with the OVCAR-3 cells and significant binding is observed even after 10 sec. A five-fold molar excess of soluble MUC16 was unable to completely inhibit the binding of mesothelin to the OVCAR-3 cells. Oxidation of the MUC16 glycans, removal of its N-linked oligosaccharides, and treatment of the mucin with wheat germ agglutinin and erythroagglutinating phytohemagglutinin abrogates its binding to mesothelin. These observations suggest that at least a subset of the MUC16-asscociated N-glycans is required for binding to mesothelin. We also demonstrate that MUC16 positive ovarian tumor cells exhibit increased adherence to A431 cells transfected with mesothelin (A431-Meso+). Only minimal adhesion is observed between MUC16 knockdown cells and A431-Meso+ cells. The binding between the MUC16 expressing ovarian tumor cells and the A431-Meso+ cells occurs even in the presence of ascites from patients with ovarian cancer.ConclusionThe strong binding kinetics of the mesothelin-MUC16 interaction and the cell adhesion between ovarian tumor cells and A431-Meso+ even in the presence of peritoneal fluid strongly support the importance of these two glycoproteins in the peritoneal metastasis of ovarian tumors. The demonstration that N-linked glycans are essential for mediating mesothlein-MUC16 binding may lead to novel therapeutic targets to control the spread of ovarian carcinoma.


Molecular Cancer | 2010

MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

Jennifer A. A. Gubbels; Mildred Felder; Sachi Horibata; Jennifer A. Belisle; Arvinder Kapur; Helen Holden; Sarah Petrie; Martine Migneault; Claudine Rancourt; Joseph P. Connor; Manish S. Patankar

BackgroundCancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition.ResultsExpression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL), which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors.ConclusionMUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in metastasizing within the peritoneal cavity and also at overcoming anti-tumor innate immune responses.


Molecular Cancer | 2010

Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes

Jennifer A. Belisle; Sachi Horibata; Gubbels Aa Jennifer; Sarah Petrie; Arvinder Kapur; Sabine André; Hans-Joachim Gabius; Claudine Rancourt; Joseph P. Connor; James C. Paulson; Manish S. Patankar

BackgroundMUC16 is a cell surface mucin expressed at high levels by epithelial ovarian tumors. Following proteolytic cleavage, cell surface MUC16 (csMUC16) is shed in the extracellular milieu and is detected in the serum of cancer patients as the tumor marker CA125. csMUC16 acts as an adhesion molecule and facilitates peritoneal metastasis of ovarian tumors. Both sMUC16 and csMUC16 also protect cancer cells from cytotoxic responses of natural killer (NK) cells. In a previous study we demonstrated that sMUC16 binds to specific subset of NK cells. Here, we identify the csMUC16/sMUC16 binding partner expressed on immune cells.ResultsAnalysis of immune cells from the peripheral blood and peritoneal fluid of ovarian cancer patients indicates that in addition to NK cells, sMUC16 also binds to B cells and monocytes isolated from the peripheral blood and peritoneal fluid. I-type lectin, Siglec-9, is identified as the sMUC16 receptor on these immune cells. Siglec-9 is expressed on approximately 30-40% of CD16pos/CD56dim NK cells, 20-30% of B cells and >95% of monocytes. sMUC16 binds to the majority of the Siglec-9pos NK cells, B cells and monocytes. sMUC16 is released from the immune cells following neuraminidase treatment. Siglec-9 transfected Jurkat cells and monocytes isolated from healthy donors bind to ovarian tumor cells via Siglec-9-csMUC16 interaction.ConclusionsRecent studies indicate that csMUC16 can act as an anti-adhesive agent that blocks tumor-immune cell interactions. Our results demonstrate that similar to other mucins, csMUC16 can also facilitate cell adhesion by interacting with a suitable binding partner such as mesothelin or Siglec-9. Siglec-9 is an inhibitory receptor that attenuates T cell and NK cell function. sMUC16/csMUC16-Siglec-9 binding likely mediates inhibition of anti-tumor immune responses.


Immunology | 2007

Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125)

Jennifer A. Belisle; Jennifer A. A. Gubbels; Cara A. Raphael; Martine Migneault; Claudine Rancourt; Joseph P. Connor; Manish S. Patankar

The ovarian tumour marker MUC16 (CA125) inhibits the cytotoxic responses of human natural killer (NK) cells and down‐regulates CD16. Here we show that approximately 10% of the peripheral blood NK cells (PBNK) from the epithelial ovarian cancer (EOC) patients are CD16– CD56br whereas 40% of the peritoneal fluid NK (PFNK) carry this phenotype, which is usually associated with NK cells from the lymph nodes or human decidua. PBNK from healthy donors exposed to PF show a significant increase in the CD16– CD56br population. This shift in phenotype is not caused by increased apoptosis of the CD16+ CD56dim cells or selective proliferation of the CD16– CD56br NK cells. Thus, the terminal differentiation of the CD16– CD56br NK cells to CD16+ CD56dim subset that occurs during normal NK cell development may actually be a reversible step. A majority of the NK cell receptors (NKp46, NKp44, NKG2D, CD244, CD226, CD158a, CD158b, and CD158e) studied were down‐regulated in the PFNK. MUC16 binds selectively to 30–40% of CD16+ CD56dim NK cells in EOC patients indicating that phenotypic alterations in these cells are mediated by tumour‐derived soluble factors. Similar to EOC, MUC16 in early pregnancy also binds to NK cells suggesting shared mechanisms of NK cell suppression in feto‐maternal tolerance and immune evasion by ovarian cancers.


Journal of Immunotherapy | 2004

Ex vivo evaluation of anti-EpCAM immunocytokine huKS-IL2 in ovarian cancer.

Joseph P. Connor; Mildred Felder; Jacquelyn A. Hank; Josephine Harter; Jacek Gan; Stephen D. Gillies; Paul M. Sondel

Abstract: Despite encouraging responses to treatment, 70% to 80% of women with ovarian cancer will recur due to subclinical residual disease. One experimental agent that merits testing in this setting is the immunocytokine huKS-IL2. Immunocytokines are fusion proteins consisting of a humanized monoclonal antibody linked to IL-2 (or other cytokines). The humanized monoclonal antibody (mAb) huKS, which recognizes the epithelial cell adhesion molecule (EpCAM), has been used to construct the immunocytokine huKS-IL2. To determine the potential therapeutic use of huKS-IL2 in ovarian cancer, the authors evaluated the expression of EpCAM in these cancers and investigated the effects of huKS-IL2 on peritoneal white blood cells and peripheral blood mononuclear cells from women with ovarian cancer. EpCAM expression was determined by immunohistochemistry using both huKS-IL2 and the parent KS1/4 antibody. Ascites fluid was collected and the cellular fraction cultured with or without huKS-IL2 to evaluate the cellular content and potential anti-tumor effects of the peritoneal effector cells (PECs). Peritoneal cells were incubated with FITC-conjugated KS antibody to determine the relative amount of EpCAM-positive cells. Nonadherent cells were analyzed by flow cytometry for hematopoietic origin with CD45 mAb and for CD69 expression as an indication of immune cell activation. EpCAM-positive NIH:OVCAR-3 cells were radiolabeled as targets in a chromium release assay with either PECs or PBMCs as effector cells in the presence or absence of 0.25 mcg/mL huKS-IL2. Differences between treatments were determined by t test. Thirty-two of thirty-three (97%) ovarian cancers were found to express EpCAM via immunohistochemistry. Eleven cases were stained using both KS1/4 and huKS-IL2, and identical patterns of staining were seen. All ascites samples tested had EpCAM-positive cells by flow cytometry. The mean fluorescence intensity of CD69 expression on peritoneal WBCs was increased from 20.7 to 43.9 as a result of culturing with huKS-IL2, indicating effector cell activation. In chromium release assays, KS-IL2 facilitated cell lysis of NIH:OVCAR-3 by PBMCs from both healthy controls and patients with ovarian cancer. PECs from all cases tested showed significant cell lysis induced by huKS-IL2 compared with untreated control cultures. Based on these findings, huKS-IL2 warrants further investigation as a potential immunotherapy for patients with epithelial ovarian cancer, preferably in a minimal disease setting as seen after complete cytoreductive surgery, after a complete clinical response to primary therapy, or when elevated CA-125 levels predict recurrent disease prior to clinical relapse.


Journal of Ovarian Research | 2010

The detection, treatment, and biology of epithelial ovarian cancer

Jennifer A. A. Gubbels; Nick Claussen; Arvinder Kapur; Joseph P. Connor; Manish S. Patankar

Ovarian cancer is particularly insidious in nature. Its ability to go undetected until late stages coupled with its non-descript signs and symptoms make it the seventh leading cause of cancer related deaths in women. Additionally, the lack of sensitive diagnostic tools and resistance to widely accepted chemotherapy regimens make ovarian cancer devastating to patients and families and frustrating to medical practitioners and researchers. Here, we provide an in-depth review of the theories describing the origin of ovarian cancer, molecular factors that influence its growth and development, and standard methods for detection and treatment. Special emphasis is focused on interactions between ovarian tumors and the innate and adaptive immune system and attempts that are currently underway to devise novel immunotherapeutic approaches for the treatment of ovarian tumors.


Cancer Immunology, Immunotherapy | 2011

Ab-IL2 fusion proteins mediate NK cell immune synapse formation by polarizing CD25 to the target cell-effector cell interface

Jennifer A. A. Gubbels; Brian Gadbaw; Ilia N. Buhtoiarov; Sachi Horibata; Arvinder Kapur; Dhara Patel; Jacquelyn A. Hank; Stephen D. Gillies; Paul M. Sondel; Manish S. Patankar; Joseph P. Connor

The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM+ (ovarian) and GD2+ (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells’ IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50–200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.


Gynecologic Oncology | 2015

Intensive postoperative glucose control reduces the surgical site infection rates in gynecologic oncology patients

A.N. Al-Niaimi; Mostafa M. Ahmed; Nikki Burish; Saygin A. Chackmakchy; Songwon Seo; Stephen L. Rose; Ellen M. Hartenbach; David M. Kushner; Nasia Safdar; Laurel W. Rice; Joseph P. Connor

OBJECTIVE SSI rates after gynecologic oncology surgery vary from 5% to 35%, but are up to 45% in patients with diabetes mellitus (DM). Strict postoperative glucose control by insulin infusion has been shown to lower morbidity, but not specifically SSI rates. Our project studied continuous postoperative insulin infusion for 24h for gynecologic oncology patients with DM and hyperglycemia with a target blood glucose of <139 mL/dL and a primary outcome of the protocols impact on SSI rates. METHODS We compared SSI rates retrospectively among three groups. Group 1 was composed of patients with DM whose blood glucose was controlled with intermittent subcutaneous insulin injections. Group 2 was composed of patients with DM and postoperative hyperglycemia whose blood glucose was controlled by insulin infusion. Group 3 was composed of patients with neither DM nor hyperglycemia. We controlled for all relevant factors associated with SSI. RESULTS We studied a total of 372 patients. Patients in Group 2 had an SSI rate of 26/135 (19%), similar to patients in Group 3 whose rate was 19/89 (21%). Both were significantly lower than the SSI rate (43/148, 29%) of patients in Group 1. This reduction of 35% is significant (p = 0.02). Multivariate analysis showed an odd ratio = 0.5 (0.28-0.91) in reducing SSI rates after instituting this protocol. CONCLUSIONS Initiating intensive glycemic control for 24h after gynecologic oncology surgery in patients with DM and postoperative hyperglycemia lowers the SSI rate by 35% (OR = 0.5) compared to patients receiving intermittent sliding scale insulin and to a rate equivalent to non-diabetics.


Gynecologic Oncology | 2008

Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance

Joseph P. Connor; Mildred Felder

OBJECTIVE Decoy receptor 3 (DcR3), a soluble tumor necrosis factor receptor is a known binding partner of multiple apoptotic ligands inhibiting apoptosis. The expression of DcR3 by cancers has been reported in gastrointestinal cancers yet it has not been described in ovarian cancer. Abnormalities in apoptosis pathways are seen in ovarian cancer and we theorized that the presence of DcR3 is a component of the dysregulation. METHODS Ascites samples from 44 women with advanced ovarian cancer were tested for DcR3 by ELISA. The ability of ascites to inhibit Fas-ligand mediated apoptosis was determined by chromium release assays using cell surface or soluble Fas-ligand. Clinical parameters including, response to platinum and progression free and overall survival were compared between patients with high or low levels of DcR3. RESULTS DcR3 was found in all 44 cases by ELISA. Ascites fluid significantly inhibited Fas-ligand mediate apoptosis using both surface Fas-ligand (KFL-9 cells) and soluble Fas-ligand. Blocking DcR3 with antibodies restores the cytolytic effects in both assays. HIGH DcR3 level was associated with stage IV disease and more than double the incidence of platinum resistant disease. In this modest sample size Low DcR3 cases had longer PFI and overall survival however neither difference was statistically significant. CONCLUSIONS DcR3 is expressed by epithelial ovarian cancers, concentrated in ascites and inhibits Fas-ligand mediated apoptosis. Together with a trend toward poor patient outcome these results indicate that expression of DcR3 by ovarian cancers is worthy of further investigation in a larger population to allow multivariate analysis.

Collaboration


Dive into the Joseph P. Connor's collaboration.

Top Co-Authors

Avatar

Manish S. Patankar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mildred Felder

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Arvinder Kapur

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. A. Gubbels

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Belisle

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David M. Kushner

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ellen M. Hartenbach

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.N. Al-Niaimi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Josephine Harter

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge