Joseph P. Hooper
Naval Postgraduate School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph P. Hooper.
ChemPhysChem | 2008
Joseph P. Hooper; Valentino R. Cooper; Timo Thonhauser; Nichols A. Romero; Frank J. Zerilli; David C. Langreth
We examine the performance of a recently developed nonlocal density functional in predicting a model noncovalent interaction, namely the weak bond between an aromatic pi system and an aliphatic C--H group. The new functional is a significant improvement over traditional density functionals, providing results which compare favorably to high-level quantum-chemistry techniques, but at considerably lower computational cost. Interaction energies in several model C--H/pi systems are in good general agreement with coupled-cluster calculations, though equilibrium distances are consistently overpredicted when using the revPBE functional for exchange. The new functional predicts changes in energy upon addition of halogen substituents correctly.
Journal of Chemical Physics | 2007
Frank J. Zerilli; Joseph P. Hooper; Maija M. Kuklja
We have studied the mechanical compressibility and band structure of solid nitromethane both in equilibrium and compressed states using Hartree-Fock and density functional theory (DFT) with atom-centered all-electron linear combination of atomic orbitals basis sets. Hartree-Fock calculations with a 6-21G basis set, uncorrected for basis set superposition error, gave the best agreement with experimental compression studies. These results may be due to the cancellation of basis set superposition error with dispersion force errors. The equilibrium DFT band gap is comparable to the lowest-energy feature in electron-impact spectroscopy of nitromethane but underpredicts the optical absorption gap; we interpret these features in terms of the presence of tightly bound excitons. Only minor changes in the gap are observed under hydrostatic compression.
Journal of Applied Physics | 2010
Chad A. Stoltz; Brian P. Mason; Joseph P. Hooper
We present the first small and ultrasmall angle neutron scattering (SANS/USANS) measurements of the internal void morphology of the high explosive RDX on length scales from 10 A to 20 μm. Measurements were taken on a range of RDX samples with similar densities and particle size distributions but which have significantly different sensitivities to shock initiation as measured by large-scale gap tests of the samples when formulated in standard polymer blends. Scattering measurements were performed using a contrast match technique to eliminate all features apart from internal void structures. The dominant feature in all samples is a surface fractal scattering that extends from ∼50 nm to above 20 μm, with no observable upper bound for the fractal correlation length. These features are interpreted in terms of scattering from rough surfaces of interior air-filled voids with fractal dimensionality between 2.4 and 2.9. The fractal pattern is proposed to arise from complex growth patterns on void surfaces as inter...
Applied Physics Letters | 2016
Brian P. Mason; M. Whittaker; James R. Hemmer; S. Arora; A. Harper; Sufian Alnemrat; A. McEachen; Sameh Helmy; J. Read de Alaniz; Joseph P. Hooper
We present a crosslinked polyurethane elastomer featuring a thermochromic molecular sensor for local temperature analysis. The thermochrome is a modified donor-acceptor Stenhouse adduct (DASA) that was dispersed homogeneously into the polymer blend in minuscule amounts. Rapid temperature jump measurements in a pyroprobe and impacts in a Hopkinson bar show that the DASA has suitable kinetics for detecting localized temperature increase following impact or rapid heating. The thermochrome retains a signature of the peak temperature in the elastomer, allowing post-mortem mapping of micron-scale temperature localization in materials such as explosive and propellant composites. We demonstrate the concept by using the kinetics of the DASA activation to determine peak temperatures reached during bullet perforation of the polyurethane.
Journal of Physical Chemistry A | 2011
Kristen S. Williams; Joseph P. Hooper
We present quantum chemistry simulations of aluminum clusters surrounded by a surface layer of cyclopentadiene-type ligands to evaluate the potential of such complexes as novel fuels or energetic materials. Density functional theory simulations are used to examine the aluminum-ligand bonding and its variation as the size of the aluminum cluster increases. The organometallic bond at the surface layer arises mainly from ligand charge donation into the Al p orbitals balanced with repulsive polarization effects. Functionalization of the ligand and changes in Al cluster size are found to alter the relative balance of these effects, but the surface organometallic bond generally remains stronger than Al-Al bonds elsewhere in the cluster. In large clusters, such as the experimentally observed Al(50)Cp(12)*, this suggests that unimolecular thermal decomposition likely proceeds through loss of surface AlCp* units, exposing the strained interior aluminum core. The calculated heats of combustion per unit volume for these systems are high, approaching 60% that of pure aluminum. We discuss the possibility of using organometallic aluminum clusters as a means of achieving rapid combustion in propellants and fuels.
Journal of Applied Physics | 2012
Joseph P. Hooper
We report the fragmentation of brittle, granular aluminum spheres following high velocity impact (0.5-2.0 km/s) on thin steel plates. These spheres, machined from isostatically pressed aluminum powder, represent a prototypical metallic reactive material. The fragments generated by the impacts are collected in a soft-catch apparatus and analyzed down to a length scale of 44μm. With increasing velocity, there is a transition from an exponential Poisson-process fragment distribution with a characteristic length scale to a power-law behavior indicative of scale-invariance. A normalized power-law distribution with a finite size cutoff is introduced and used to analyze the number and mass distributions of the recovered fragments. At high impact velocities, the power-law behavior dominates the distribution and the power-law exponent is identical to the universal value for brittle fragmentation discussed in recent works. The length scale at which the power-law behavior decays is consistent with the idea that the ...
Analytical Chemistry | 2016
Aldo Ponce; Lynn B. Brostoff; Sarah K. Gibbons; Peter Y. Zavalij; Carol Viragh; Joseph P. Hooper; Sufian Alnemrat; Karen Gaskell; Bryan W. Eichhorn
Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.
Journal of Chemical Physics | 2014
Sufian Alnemrat; Joseph P. Hooper
We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O2 molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O2 diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material.
Journal of Chemical Physics | 2010
Joseph P. Hooper
We consider the process of establishing thermal equilibrium behind an ideal shock front in molecular crystals and its possible role in initiating chemical reaction at high shock pressures. A new theory of equilibration via multiphonon energy transfer is developed to treat the scattering of shock-induced phonons into internal molecular vibrations. Simple analytic forms are derived for the change in this energy transfer at different Hugoniot end states following shock compression. The total time required for thermal equilibration is found to be an order of magnitude or faster than proposed in previous work; in materials representative of explosive molecular crystals, equilibration is predicted to occur within a few picoseconds following the passage of an ideal shock wave. Recent molecular dynamics calculations are consistent with these time scales. The possibility of defect-induced temperature localization due purely to nonequilibrium phonon processes is studied by means of a simple model of the strain field around an inhomogeneity. The specific case of immobile straight dislocations is studied, and a region of enhanced energy transfer on the order of 5 nm is found. Due to the rapid establishment of thermal equilibrium, these regions are unrelated to the shock sensitivity of a material but may allow temperature localization at high shock pressures. Results also suggest that if any decomposition due to molecular collisions is occurring within the shock front itself, these collisions are not enhanced by any nonequilibrium thermal state.
Journal of Applied Physics | 2016
Yi Ming Tan; Octavio Cervantes; SeanWoo Nam; John D. Molitoris; Joseph P. Hooper
We examine the dynamic failure of ice-templated freeze-cast alumina scaffolds that are being considered as biomimetic hierarchical structures. Three porosities of alumina freeze-cast structures were fabricated, and a systematic variation in microstructural properties such as lamellar width and thickness was observed with changing porosity. Dynamic impact tests were performed in a light-gas gun to examine the failure properties of these materials under high strain-rate loading. Nearly complete delamination was observed following impact, along with characteristiccracking across the lamellar width. Average fragment size decreases with increasing porosity, and a theoretical model was developed to explain this behavior based on microstructural changes. Using an energy balance between kinetic, strain, and surface energies within a single lamella, we are able to accurately predict the characteristic fragment size using only standard material properties of bulk alumina.