Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph R. McConnell is active.

Publication


Featured researches published by Joseph R. McConnell.


Science | 2007

20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing

Joseph R. McConnell; Ross Edwards; Gregory L. Kok; Mark G. Flanner; Charles S. Zender; Eric S. Saltzman; J. Ryan Banta; Daniel R. Pasteris; Megan M. Carter; Jonathan D. W. Kahl

Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non–sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold increase in ice-core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower but increasing. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 watts per square meter, which is eight times the typical preindustrial forcing value.


Nature | 2015

Timing and climate forcing of volcanic eruptions for the past 2,500 years

M. Sigl; Mai Winstrup; Joseph R. McConnell; Kees C. Welten; Gill Plunkett; Francis Ludlow; Ulf Büntgen; Marc W. Caffee; Nathan Chellman; Dorthe Dahl-Jensen; Hubertus Fischer; Sepp Kipfstuhl; Conor Kostick; Olivia J. Maselli; Florian Mekhaldi; Robert Mulvaney; Raimund Muscheler; Daniel R. Pasteris; Jonathan R. Pilcher; Matthew W. Salzer; Simon Schüpbach; Jørgen Peder Steffensen; B. M. Vinther; Thomas E. Woodruff

Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.


Proceedings of the National Academy of Sciences of the United States of America | 2007

20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America

Joseph R. McConnell; Alberto J. Aristarain; J. Ryan Banta; P. Ross Edwards; Jefferson Cardia Simões

Crustal dust in the atmosphere impacts Earths radiative forcing directly by modifying the radiation budget and affecting cloud nucleation and optical properties, and indirectly through ocean fertilization, which alters carbon sequestration. Increased dust in the atmosphere has been linked to decreased global air temperature in past ice core studies of glacial to interglacial transitions. We present a continuous ice core record of aluminum deposition during recent centuries in the northern Antarctic Peninsula, the most rapidly warming region of the Southern Hemisphere; such a record has not been reported previously. This record shows that aluminosilicate dust deposition more than doubled during the 20th century, coincident with the ≈1°C Southern Hemisphere warming: a pattern in parallel with increasing air temperatures, decreasing relative humidity, and widespread desertification in Patagonia and northern Argentina. These results have far-reaching implications for understanding the forces driving dust generation and impacts of changing dust levels on climate both in the recent past and future.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Coal burning leaves toxic heavy metal legacy in the Arctic

Joseph R. McConnell; Ross Edwards

Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before ≈1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772–2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.


Nature | 2013

Onset of deglacial warming in West Antarctica driven by local orbital forcing

T. J. Fudge; Eric J. Steig; Bradley R. Markle; Spruce W. Schoenemann; Qinghua Ding; Kendrick C. Taylor; Joseph R. McConnell; Edward J. Brook; Todd Sowers; James W. C. White; Richard B. Alley; Hai Cheng; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Kurt M. Cuffey; Jon Edwards; R. Lawrence Edwards; Ross Edwards; John M. Fegyveresi; David G. Ferris; Jay A. Johnson; Geoffrey M. Hargreaves; James E. Lee; Olivia J. Maselli; William P. Mason; Kenneth C. McGwire; Logan E. Mitchell; Nicolai B. Mortensen; Peter D. Neff

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.


Journal of Geophysical Research | 2013

A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years

Michael Sigl; Joseph R. McConnell; Lawrence Layman; Olivia J. Maselli; Kenneth C. McGwire; Daniel R. Pasteris; Dorthe Dahl-Jensen; Jørgen Peder Steffensen; B. M. Vinther; Ross Edwards; Robert Mulvaney; Sepp Kipfstuhl

Volcanism is a natural climate forcing causing short-term variations in temperatures. Histories of volcanic eruptions are needed to quantify their role in climate variability and assess human impacts. We present two new seasonally resolved, annually dated non-sea-salt sulfur records from polar ice cores - WAIS Divide (WDC06A) from West Antarctica spanning 408 B.C.E. to 2003 C.E. and NEEM (NEEM-2011-S1) from Greenland spanning 78 to 1997 C.E. - both analyzed using high-resolution continuous flow analysis coupled to two mass spectrometers. The high dating accuracy allowed placing the large bi-hemispheric deposition event ascribed to the eruption of Kuwae in Vanuatu (previously thought to be 1452/1453 C.E. and used as a tie-point in ice core dating) into the year 1458/1459 C.E. This new age is consistent with an independent ice core timescale from Law Dome and explains an apparent delayed response in tree rings to this volcanic event. A second volcanic event is detected in 1453 C.E. in both ice cores. We show for the first time ice core signals in Greenland and Antarctica from the strong eruption of Taupo in New Zealand in 232 C.E. In total, 133 volcanic events were extracted from WDC06A and 138 from NEEM-2011-S1, with 50 ice core signals - predominantly from tropical source volcanoes - identified simultaneously in both records. We assess the effect of large bipolar events on temperature-sensitive tree ring proxies. These two new volcanic records, synchronized with available ice core records to account for spatial variability in sulfate deposition, provide a basis for improving existing time series of volcanic forcing.


Journal of Geophysical Research | 2009

Annual accumulation for Greenland updated using ice core data developed during 2000--2006 and analysis of daily coastal meteorological data

Roger C. Bales; Qinghua Guo; Dayong Shen; Joseph R. McConnell; Guoming Du; J. F. Burkhart; Vandy Blue Spikes; Edward Hanna; John Cappelen

An updated accumulation map for Greenland is presented on the basis of 39 new ice core estimates of accumulation, 256 ice sheet estimates from ice cores and snow pits used in previous maps, and reanalysis of time series data from 20 coastal weather stations. The period 1950-2000 is better represented by the data than are earlier periods. Ice-sheetwide accumulation was estimated based on kriging. The average accumulation (95 confidence interval, or ±2 times standard error) over the Greenland ice sheet is 30.0 ± 2.4 g cm -2 a-1, with the average accumulation above 2000-m elevation being essentially the same, 29.9 ± 2.2 g cm-2 a -1. At higher elevations the new accumulation map maintains the main features shown in previous maps. However, there are five coastal areas with obvious differences: southwest, northwest, and eastern regions, where the accumulation values are 20-50 lower than previously estimated, and southeast and northeast regions, where the accumulation values are 20-50 higher than previously estimated. These differences are almost entirely due to new coastal data. The much lower accumulation in the southwest and the much higher accumulation in the southeast indicated by the current map mean that long-term mass balance in both catchments is closer to steady state than previously estimated. However, uncertainty in these areas remains high owing to strong gradients in precipitation from the coast inland. A significant and sustained precipitation measurement program will be needed to resolve this uncertainty. Copyright 2009 by the American Geophysical Union.


Journal of Geophysical Research | 2001

Accumulation over the Greenland ice sheet from historical and recent records

Roger C. Bales; Joseph R. McConnell; Ellen Mosley-Thompson; Beata Csatho

Water accumulation, defined as precipitation minus evaporation, was estimated over all of Greenland as part of a program to understand changes in ice sheet mass and elevation. Over 360 historical and recent point accumulation estimates on the Greenland ice sheet were evaluated, and 276 estimates that were judged to be high quality were used to develop the accumulation map. The data set includes 99 points developed as part of four investigations of the past 5–15 years; these are judged to have the greatest accuracy. Using kriging, the average accumulation over Greenland is estimated to be ∼30 g cm−2 yr−1. For the interior part of the ice sheet above 1800 m elevation, where most of the data were acquired, the average accumulation is also estimated to be ∼30 g cm−2 yr−1. There are still many areas on the ice sheet, including northwest, southeast, and southern Greenland, where accumulation is highly uncertain, exceeding the mean ice sheet uncertainty at a point of ∼20–25%. In these regions, further sampling will be required to reduce uncertainty in both regional and ice-sheet-wide accumulation.


Nature | 2015

Precise interpolar phasing of abrupt climate change during the last ice age

Christo Buizert; Betty M. Adrian; Jinho Ahn; Mary R. Albert; Richard B. Alley; Daniel Baggenstos; Thomas K. Bauska; R. Bay; Brian B. Bencivengo; Charles R. Bentley; Edward J. Brook; Nathan Chellman; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Eric D. Cravens; Kurt M. Cuffey; Nelia W. Dunbar; Jon Edwards; John M. Fegyveresi; Dave G. Ferris; T. J. Fudge; Chris J. Gibson; Vasileios Gkinis; Joshua J. Goetz; Stephanie Gregory; Geoffrey M. Hargreaves; Nels Iverson; Jay A. Johnson; Tyler R. Jones

The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.


Nature | 2001

Changes in Greenland ice sheet elevation attributed primarily to snowaccumulation variability

Joseph R. McConnell; R. J. Arthern; E. Mosley-Thompson; C. H. Davis; Roger C. Bales; Robert H. Thomas; J. F. Burkhart; J. D. Kyne

The response of grounded ice sheets to a changing climate critically influences possible future changes in sea level. Recent satellite surveys over southern Greenland show little overall elevation change at higher elevations, but large spatial variability. Using satellite studies alone, it is not possible to determine the geophysical processes responsible for the observed elevation changes and to decide if recent rates of change exceed the natural variability. Here we derive changes in ice-sheet elevation in southern Greenland, for the years 1978–88, using a physically based model of firn densification and records of annual snow accumulation reconstructed from 12 ice cores at high elevation. Our patterns of accumulation-driven elevation change agree closely with contemporaneous satellite measurements of ice-sheet elevation change, and we therefore attribute the changes observed in 1978–88 to variability in snow accumulation. Similar analyses of longer ice-core records show that in this decade the Greenland ice sheet exhibited typical variability at high elevations, well within the long-term natural variability. Our results indicate that a better understanding of ice-sheet mass changes will require long-term measurements of both surface elevation and snow accumulation.

Collaboration


Dive into the Joseph R. McConnell's collaboration.

Top Co-Authors

Avatar

Roger C. Bales

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael Sigl

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Ryan Banta

Desert Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. J. Curran

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge