Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph R. Pomerening is active.

Publication


Featured researches published by Joseph R. Pomerening.


Nature Cell Biology | 2003

Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2

Joseph R. Pomerening; Eduardo D. Sontag; James E. Ferrell

In the early embryonic cell cycle, Cdc2–cyclin B functions like an autonomous oscillator, whose robust biochemical rhythm continues even when DNA replication or mitosis is blocked. At the core of the oscillator is a negative feedback loop; cyclins accumulate and produce active mitotic Cdc2–cyclin B; Cdc2 activates the anaphase-promoting complex (APC); the APC then promotes cyclin degradation and resets Cdc2 to its inactive, interphase state. Cdc2 regulation also involves positive feedback, with active Cdc2–cyclin B stimulating its activator Cdc25 (refs 5–7) and inactivating its inhibitors Wee1 and Myt1 (refs 8–11). Under the correct circumstances, these positive feedback loops could function as a bistable trigger for mitosis, and oscillators with bistable triggers may be particularly relevant to biological applications such as cell cycle regulation. Therefore, we examined whether Cdc2 activation is bistable. We confirm that the response of Cdc2 to non-degradable cyclin B is temporally abrupt and switch-like, as would be expected if Cdc2 activation were bistable. We also show that Cdc2 activation exhibits hysteresis, a property of bistable systems with particular relevance to biochemical oscillators. These findings help establish the basic systems-level logic of the mitotic oscillator.


Science | 2008

Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops

Tony Yu-Chen Tsai; Yoon Sup Choi; Wenzhe Ma; Joseph R. Pomerening; Chao Tang; James E. Ferrell

A simple negative feedback loop of interacting genes or proteins has the potential to generate sustained oscillations. However, many biological oscillators also have a positive feedback loop, raising the question of what advantages the extra loop imparts. Through computational studies, we show that it is generally difficult to adjust a negative feedback oscillators frequency without compromising its amplitude, whereas with positive-plus-negative feedback, one can achieve a widely tunable frequency and near-constant amplitude. This tunability makes the latter design suitable for biological rhythms like heartbeats and cell cycles that need to provide a constant output over a range of frequencies. Positive-plus-negative oscillators also appear to be more robust and easier to evolve, rationalizing why they are found in contexts where an adjustable frequency is unimportant.


Cell | 2005

Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations

Joseph R. Pomerening; Sun Young Kim; James E. Ferrell

The cell-cycle oscillator includes an essential negative-feedback loop: Cdc2 activates the anaphase-promoting complex (APC), which leads to cyclin destruction and Cdc2 inactivation. Under some circumstances, a negative-feedback loop is sufficient to generate sustained oscillations. However, the Cdc2/APC system also includes positive-feedback loops, whose functional importance we now assess. We show that short-circuiting positive feedback makes the oscillations in Cdc2 activity faster, less temporally abrupt, and damped. This compromises the activation of cyclin destruction and interferes with mitotic exit and DNA replication. This work demonstrates a systems-level role for positive-feedback loops in the embryonic cell cycle and provides an example of how oscillations can emerge out of combinations of subcircuits whose individual behaviors are not oscillatory. This work also underscores the fundamental similarity of cell-cycle oscillations in embryos to repetitive action potentials in pacemaker neurons, with both systems relying on a combination of negative and positive-feedback loops.


Current Biology | 2007

Cyclin A2 Regulates Nuclear-Envelope Breakdown and the Nuclear Accumulation of Cyclin B1

Delquin Gong; Joseph R. Pomerening; Jason W. Myers; Christer Gustavsson; Joshua T. Jones; Angela T. Hahn; Tobias Meyer; James E. Ferrell

Mitosis is thought to be triggered by the activation of Cdk-cyclin complexes. Here we have used RNA interference (RNAi) to assess the roles of three mitotic cyclins, cyclins A2, B1, and B2, in the regulation of centrosome separation and nuclear-envelope breakdown (NEB) in HeLa cells. We found that the timing of NEB was affected very little by knocking down cyclins B1 and B2 alone or in combination. However, knocking down cyclin A2 markedly delayed NEB, and knocking down both cyclins A2 and B1 delayed NEB further. The timing of cyclin B1-Cdk1 activation was normal in cyclin A2 knockdown cells, and there was no delay in centrosome separation, an event apparently controlled by the activation of cytoplasmic cyclin B1-Cdk1. However, nuclear accumulation of cyclin B1-Cdk1 was markedly delayed in cyclin A2 knockdown cells. Finally, a constitutively nuclear cyclin B1, but not wild-type cyclin B1, restored normal NEB timing in cyclin A2 knockdown cells. These findings show that cyclin A2 is required for timely NEB, whereas cyclins B1 and B2 are not. Nevertheless cyclin B1 translocates to the nucleus just prior to NEB in a cyclin A2-dependent fashion and is capable of supporting NEB if rendered constitutively nuclear.


FEBS Letters | 2009

Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and a cell cycle oscillator

James E. Ferrell; Joseph R. Pomerening; Sun Young Kim; Nikki B. Trunnell; Wen Xiong; Chi-Ying F. Huang; Eric M. Machleder

Here we review some of our work over the last decade on Xenopus oocyte maturation, a cell fate switch, and the Xenopus embryonic cell cycle, a highly dynamical process. Our approach has been to start with wiring diagrams for the regulatory networks that underpin the processes; carry out quantitative experiments to describe the response functions for individual legs of the networks; and then construct simple analytical models based on chemical kinetic theory and the graphical rate‐balance formalism. These studies support the view that the all‐or‐none, irreversible nature of oocyte maturation arises from a saddle–node bifurcation in the regulatory system that drives the process, and that the clock‐like oscillations of the embryo are built upon a hysteretic switch with two saddle–node bifurcations. We believe that this type of reductionistic systems biology holds great promise for understanding complicated biochemical processes in simpler terms.


Molecular Biology of the Cell | 2008

Rapid Cycling and Precocious Termination of G1 Phase in Cells Expressing CDK1AF

Joseph R. Pomerening; Jeffrey A. Ubersax; James E. Ferrell

In Xenopus embryos, the cell cycle is driven by an autonomous biochemical oscillator that controls the periodic activation and inactivation of cyclin B1-CDK1. The oscillator circuit includes a system of three interlinked positive and double-negative feedback loops (CDK1 -> Cdc25 -> CDK1; CDK1 -/ Wee1 -/ CDK1; and CDK1 -/ Myt1 -/ CDK1) that collectively function as a bistable trigger. Previous work established that this bistable trigger is essential for CDK1 oscillations in the early embryonic cell cycle. Here, we assess the importance of the trigger in the somatic cell cycle, where checkpoints and additional regulatory mechanisms could render it dispensable. Our approach was to express the phosphorylation site mutant CDK1AF, which short-circuits the feedback loops, in HeLa cells, and to monitor cell cycle progression by live cell fluorescence microscopy. We found that CDK1AF-expressing cells carry out a relatively normal first mitosis, but then undergo rapid cycles of cyclin B1 accumulation and destruction at intervals of 3-6 h. During these cycles, the cells enter and exit M phase-like states without carrying out cytokinesis or karyokinesis. Phenotypically similar rapid cycles were seen in Wee1 knockdown cells. These findings show that the interplay between CDK1, Wee1/Myt1, and Cdc25 is required for the establishment of G1 phase, for the normal approximately 20-h cell cycle period, and for the switch-like oscillations in cyclin B1 abundance characteristic of the somatic cell cycle. We propose that the HeLa cell cycle is built upon an unreliable negative feedback oscillator and that the normal high reliability, slow pace and switch-like character of the cycle is imposed by a bistable CDK1/Wee1/Myt1/Cdc25 system.


Cell Cycle | 2007

Emi2 at the crossroads: where CSF meets MPF.

David V. Hansen; Joseph R. Pomerening; Matthew K. Summers; Julie J. Miller; James E. Ferrell; Peter K. Jackson

Vertebrate eggs arrest at metaphase of meiosis II due to an activity known as cytostatic factor (CSF). CSF antagonizes the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C), preventing cyclin B destruction and meiotic exit until fertilization occurs. A puzzling feature of CSF arrest is that APC/C inhibition is leaky. Ongoing cyclin B synthesis is counterbalanced by a limited amount of APC/C-mediated cyclin B destruction; thus, cyclin B/Cdc2 activity remains at steady state. How the APC/C can be slightly active toward cyclin B, and yet restrained from ubiquitinating cyclin B altogether, is unknown. Emi2/XErp1 is the critical CSF component directly responsible for APC/C inhibition during CSF arrest. Fertilization triggers the Ca2+-dependent destruction of Emi2, releasing the APC/C to ubiquitinate the full pool of cyclin B and initiate completion of meiosis. Previously, we showed that a phosphatase maintains Emi2’s APC/C-inhibitory activity in CSF-arrested Xenopus egg extracts. Here, we demonstrate that phosphatase inhibition permits Emi2 phosphorylation at thr-545 and -551, which inactivates Emi2. Furthermore, we provide evidence that adding excess cyclin B to CSF extracts stimulates Cdc2 phosphorylation of these same residues, antagonizing Emi2-APC/C association. Our findings suggest a model wherein the pool of Emi2 acts analogously to a rheostat by integrating Cdc2 and phosphatase activities to prevent cyclin B overaccumulation and Cdc2 hyperactivity during the indefinite period of time between arrival at metaphase II and eventual fertilization. Finally, we propose that inactivation of Emi2 by Cdc2 permits mitotic progression during early embryonic cleavage cycles.


Molecular Biology of the Cell | 2014

Uncovering the Role of APC-Cdh1 in Generating the Dynamics of S-phase Onset

Xi Yuan; Jeyaraman Srividhya; Thomas De Luca; Ju-hyong E. Lee; Joseph R. Pomerening

Premature S-phase entry due to Cdh1 ablation results from premature loss of the CDK inhibitor p27 and a reduced requirement for cyclin E1. This prolonged S phase coincides with slowed replication fork elongation and fewer replication terminations, both of which could contribute to genome instability.


Molecular Biology of the Cell | 2012

Punctuated cyclin synthesis drives early embryonic cell cycle oscillations

Qing Kang; Joseph R. Pomerening

Cyclin B accumulation in the early Xenopus embryo drives CDK1 oscillations. CDK1 directs a negative-feedback loop upon cyclin B synthesis through the repression of global protein translation, and this attenuation of cyclin B synthesis could improve the efficiency and robustness of this cell cycle oscillator.


Free Radical Biology and Medicine | 2015

Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells

Kah Tan Allen; Helen Chin-Sinex; Thomas DeLuca; Joseph R. Pomerening; Jeremy Sherer; John B. Watkins; John Foley; Jerry M. Jesseph; Marc S. Mendonca

We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells.

Collaboration


Dive into the Joseph R. Pomerening's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Kang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Yuan

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge