Joseph R. Siebert
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph R. Siebert.
Annals of Neurology | 2005
Rong Li; Anne B. Johnson; Gajja S. Salomons; James E. Goldman; Sakkubai Naidu; Roy A. Quinlan; Bruce Cree; Stephanie Z. Ruyle; Brenda Banwell; Marc d'Hooghe; Joseph R. Siebert; Cristin Rolf; Helen Cox; Alyssa T. Reddy; Luis González Gutiérrez-Solana; Amanda Collins; Roy O. Weller; Albee Messing; Marjo S. van der Knaap; Michael Brenner
Alexander disease is a progressive, usually fatal neurological disorder defined by the widespread and abundant presence in astrocytes of protein aggregates called Rosenthal fibers. The disease most often occurs in infants younger than 2 years and has been labeled a leukodystrophy because of an accompanying severe myelin deficit in the frontal lobes. Later onset forms have also been recognized based on the presence of abundant Rosenthal fibers. In these cases, clinical signs and pathology can be quite different from the infantile form, raising the question whether they share the same underlying cause. Recently, we and others have found pathogenic, de novo missense mutations in the glial fibrillary acidic protein gene in most infantile patients examined and in a few later onset patients. To obtain further information about the role of glial fibrillary acidic protein mutations in Alexander disease, we analyzed 41 new patients and another 3 previously described clinically, including 18 later onset patients. Our results show that dominant missense glial fibrillary acidic protein mutations account for nearly all forms of this disorder. They also significantly expand the catalog of responsible mutations, verify the value of magnetic resonance imaging diagnosis, indicate an unexpected male predominance for the juvenile form, and provide insights into phenotype–genotype relations. Ann Neurol 2005;57:310–326
Journal of Pediatric Surgery | 1984
Joseph R. Siebert; Joel E. Haas; J. Bruce Beckwith
Quantitative anatomic study of the hearts of eight infants with left-sided congenital diaphragmatic hernia (CDH) has revealed significantly decreased cardiac mass, due to hypoplasia of the left atrium and ventricle and interventricular septum. These morphologic deficiencies may be a result of compression of mediastinal structures by herniated abdominal viscera during prenatal life. Left ventricular hypoplasia is likely to be an important factor in the pathogenesis of cardiac insufficiency in patients with left CDH.
Journal of Pediatric Surgery | 1988
Denis R. Benjamin; Sandra E. Juul; Joseph R. Siebert
Congenital posterolateral diaphragmatic hernia (CDH) is widely regarded as an isolated defect, but this view is incomplete. We reviewed our clinical and autopsy experience and the literature from the past 25 years in order to catalogue the frequency and clinical importance of additional malformations in patients with CDH. The study showed two broad categories of patients. In the larger group of infants (65 of 108, or 60%), CDH was the only severe defect, apart from those normally associated with the presence of abdominal viscera in the thorax. Thirty-six of these patients (55%) survived. A striking finding among infants with isolated CDH, not previously highlighted in the literature, was cryptorchidism which was present in 30% of males. By contrast, 43 patients (40%) had one or more severe extradiaphragmatic malformations; only six of these infants (14%) survived. Defects in morphogenesis were widespread, heterogeneous, and seemingly related to numerous pathogenetic mechanisms. Most often abnormalities involved the heart, brain, genitourinary system, craniofacial region, or limbs. The high incidence of multiple anomalies in some patients with CDH should influence our investigations into causes and mechanisms. Patients with CDH should be evaluated carefully for additional defects--their presence has a significant impact on management and worsens prognosis.
Cancer Epidemiology, Biomarkers & Prevention | 2006
Jacintha O'Sullivan; Rosa Ana Risques; Margaret T. Mandelson; Lu Chen; Teresa A. Brentnall; Mary P. Bronner; Melissa P. MacMillan; Ziding Feng; Joseph R. Siebert; John D. Potter; Peter S. Rabinovitch
Telomeres shorten with age, which may be linked to genomic instability and an increased risk of cancer. To explore this association, we analyzed telomere length in normal colorectal tissue of individuals at different ages using quantitative-fluorescence in situ hybridization (Q-FISH) and quantitative-PCR (Q-PCR). Using Q-FISH, we also examined the histologically normal epithelium adjacent to, or distant from, colon adenomas and cancers, in addition to the neoplasms. Q-FISH and Q-PCR showed that telomere length was inversely associated with age until ∼ages 60 to 70; surprisingly, beyond this age, telomere length was positively associated with age. This association was found exclusively in epithelial, and not in stromal, cells. Peripheral blood lymphocytes showed an inverse association between telomere length and age, but without any apparent increase in telomere length in the oldest individuals. Telomere length in larger adenoma lesions (>2 cm) was significantly shorter than in normal adjacent (P = 0.004) or normal distant (P = 0.05) tissue from the same individuals. However, telomere length in histologically normal epithelium adjacent to cancers or in adenomas <2 cm was not statistically different from that of the normal distant mucosa or from normal controls, evidence that a telomere-shortening field effect was not present. We suggest that the positive association between telomere length and age in the oldest patients is a consequence of selective survival of elderly patients with long colonocyte telomeres. (Cancer Epidemiol Biomarkers Prev 2006;15(3):573–7)
Human Mutation | 2013
Partha Sen; Yaping Yang; Colby Navarro; Iris Silva; Przemyslaw Szafranski; Katarzyna E. Kolodziejska; Avinash V. Dharmadhikari; Hasnaa Mostafa; Harry P. Kozakewich; Debra L. Kearney; John Cahill; Merrissa Whitt; Masha Bilic; Linda R. Margraf; Adrian Charles; Jack Goldblatt; Kathleen Gibson; Patrick E. Lantz; A. Julian Garvin; John K. Petty; Zeina N. Kiblawi; Craig W. Zuppan; Allyn McConkie-Rosell; Marie McDonald; Stacey L. Peterson-Carmichael; Jane T. Gaede; Binoy Shivanna; Deborah Schady; Philippe Friedlich; Stephen R. Hays
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Nonpulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and 10 deletions, we have identified an additional 38 novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, 20 missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic. We report four familial cases of which three show maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA‐binding domain, indicating its plausible role in FOXF1 function. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.
American Journal of Medical Genetics Part A | 2007
Sara M. Duesterhoeft; Linda M. Ernst; Joseph R. Siebert; Raj P. Kapur
Sirenomelia and caudal regression have sparked centuries of interest and recent debate regarding their classification and pathogenetic relationship. Specific anomalies are common to both conditions, but aside from fusion of the lower extremities, an aberrant abdominal umbilical artery (“persistent vitelline artery”) has been invoked as the chief anatomic finding that distinguishes sirenomelia from caudal regression. This observation is important from a pathogenetic viewpoint, in that diversion of blood away from the caudal portion of the embryo through the abdominal umbilical artery (“vascular steal”) has been proposed as the primary mechanism leading to sirenomelia. In contrast, caudal regression is hypothesized to arise from primary deficiency of caudal mesoderm. We present five cases of caudal regression that exhibit an aberrant abdominal umbilical artery similar to that typically associated with sirenomelia. Review of the literature identified four similar cases. Collectively, the series lends support for a caudal regression–sirenomelia spectrum with a common pathogenetic basis and suggests that abnormal umbilical arterial anatomy may be the consequence, rather than the cause, of deficient caudal mesoderm.
Pediatric and Developmental Pathology | 2002
Harvey B. Sarnat; Denis R. Benjamin; Joseph R. Siebert; Gad B. Kletter; Sarah R. Cheyette
Congenital absence of the midbrain and upper pons is a rare human malformation. We describe two unrelated infants with this anomaly and cerebellar hypoplasia who were born at term but died in early infancy from lack of central respiratory drive. MRI in both cases disclosed the lesions during life. Neuropathological examination, performed in one, included immunocytochemical studies of NeuN, synaptophysin, vimentin, and glial fibrillary acidic protein (GFAP). Autopsy revealed a thin midline cord passing through the clivus, in place of the midbrain; it corresponded to hypoplastic and fused corticospinal tracts with ectopic neural tissue in the surrounding leptomeninges. Some ectopia were immunoreactive for synaptophysin and NeuN and others were nonreactive. The neural surfaces facing the subarachnoid fluid-filled space left by the absent midbrain and upper pons were lined by an abnormal villous ependyma. The architecture of the cerebellar cortex was imperfect but generally normal, and Bergmann glial cells had normal radial processes shown by vimentin and GFAP. Structures of the telencephalon, diencephalon, lower brainstem, and spinal cord were generally well formed, but inferior olivary and dentate nuclei were rudimentary and the spinal central canal was dilated at lumbar levels. The cerebral cortex was normally laminated, but pyramidal neurons of layer 5 were sparse in the frontal lobes. The hippocampus, olfactory system, and corpus callosum were formed. An ectopic lingual thyroid was found and had been associated with hypothyroidism during life. A murine model resembling this dysgenesis is demonstrated by homozygous mutations of the organizer genes Wnt1 or En1, also resulting in cerebellar aplasia, and En2, associated with cerebellar hypoplasia. These genes are essential to the formation of the mesencephalic neuromere and rhombomere 1 (metencephalon or upper pons and cerebellum). Pax8 has binding sites in the promoter for En2 and is essential for thyroid development. We speculate that in the human, the failure to form a mesencephalon and metencephalon, with cerebellar hypoplasia, results from a mutation or deletion in the EN2 (Engrailed-2) gene.
Obstetrics & Gynecology | 2006
Joanna J. Phillips; B S Mahony; Joseph R. Siebert; Tasneem Lalani; Corinne L. Fligner; Raj P. Kapur
OBJECTIVE: This autopsy-based study was designed to evaluate sonographic and neuropathologic findings of fetuses diagnosed prenatally with Dandy-Walker malformation complex. METHODS: The retrospective study encompassed a series of 44 autopsy cases from 2 tertiary referral centers with a prenatal ultrasound diagnosis of Dandy-Walker malformation complex between 1995 and 2003. Ultrasound and pathology data from the cases and from age-matched controls were reviewed in a blinded manner. An unequivocal diagnosis of Dandy-Walker malformation complex from ultrasonography or pathology archival images required significant hypoplasia or aplasia of the cerebellar vermis. RESULTS: Neuropathologic examination failed to confirm the prenatal diagnosis of Dandy-Walker malformation complex in 59% (26/44, 95% confidence interval [CI] 44–72) of the cases. After standardized reevaluation of high quality archival sonograms and pathology images, concordance remained poor at 55% (6/11 cases, 95% CI 28–79). Sonographic features that favored concordance included marked enlargement of the cisterna magna (≥ 10 mm), complete aplasia of the vermis, and a trapezoid-shaped gap between the cerebellar hemispheres. This latter finding contrasted with a keyhole-shaped gap in fetuses with no cerebellar neuropathology. CONCLUSION: Correlation between a prenatal ultrasound diagnosis of Dandy-Walker malformation complex and autopsy neuropathology findings is poor. Unequivocal prenatal sonographic diagnosis of Dandy-Walker malformation complex should be reserved for cases with the classic findings of Dandy-Walker malformation, including enlargement of the cisterna magna, aplasia of the vermis, and a trapezoid-shaped, rather than keyhole-shaped, interhemispheric gap. LEVEL OF EVIDENCE: III
Pediatric and Developmental Pathology | 1998
Susan Coventry; Raj P. Kapur; Joseph R. Siebert
ABSTRACT Holoprosencephaly is a complex congenital malformation of the brain and is often associated with a spectrum of facial anomalies ranging from normocephaly or nondiagnostic changes to cleft lip/palate (premaxillary dysgenesis), cebocephaly, ethmocephaly, and cyclopia. The primary insult is thought to occur during gastrulation, when prechordal mesenchyme and overlying anterior neural plate undergo complex developmental interactions. Exposure to cyclopamine, a steroid isolated from the desert plant Veratrum californicum, causes holoprosencephaly in mammalian embryos. We have begun to study the pathogenesis of cyclopamine-induced holoprosencephaly and associated craniofacial anomalies in Syrian golden hamsters (Mesocricetus auratus). Embryos were exposed to a single maternal dose of cyclopamine during gastrulation on embryonic day (E) 7.0. By E13.0, 62% of fetuses showed craniofacial malformations, including premaxillary dysgenesis, ocular hypotelorism, and cebocephaly. Facial anomalies were associated with absence of the premaxilla and abnormalities of the midline cranial base, particularly the ethmoid and sphenoid bones. Histological sections from cyclopamine-treated embryos at earlier stages showed marked deficiency of cranial mesenchyme derived from the rostral neural crest. Expression of two transcription factors, HNF-3β and Hox-b5, which have been implicated in specification of rostral and caudal neural crest cells, respectively, were examined immunohistochemically. Treatment with cyclopamine caused a transient loss of HNF-3β immunoreactivity in prechordal mesenchyme, but had no effect on Hox-b5 expression. The findings suggest that an early event in the pathogenesis of cyclopamine-induced holoprosencephaly may be altered expression of selected proteins in the prechordal mesenchyme and floor plate with secondary impaired development of the adjacent neural plate and cranial neural crest.
Pediatric and Developmental Pathology | 2005
Joseph R. Siebert; Joe C. Rutledge; Raj P. Kapur
Cloacal anomalies exhibit a wide variety of morphologic types and accompanying clinical severity. The association of malformations of the cloaca with partial, complete, or conjoined twinning has been appreciated for some time, but, with the advent of prenatal ultrasound technology, appears to occur with a greater frequency than once thought. This observation has important implications for pathogenesis. We present 2 representative cases, a 19-week-old female fetus with duplication of several caudal structures and a 21-week-old male fetus with cloacal exstrophy variant and demised co-twin with lower abdominal wall defect, extruded intestinal tract, absent external genitalia, and imperforate anus. These findings and previously published theories suggest that certain models of monozygotic twinning may apply to the pathogenesis of cloacal anomalies. Specifically, the partial or complete duplication of the organizing center within a single embryonic disc may increase the risk of mesodermal insufficiency and thus account for the failure of complete development of the cloacal membrane and consequent exstrophy or other aberration.