Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph S. Beckman is active.

Publication


Featured researches published by Joseph S. Beckman.


Archives of Biochemistry and Biophysics | 1991

Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide

Rafael Radi; Joseph S. Beckman; Kenneth M. Bush; Bruce A. Freeman

Endothelial cells, macrophages, neutrophils, and neuronal cells generate superoxide (O2-) and nitric oxide (.NO) which can combine to form peroxynitrite anion (ONOO-). Peroxynitrite, known to oxidize sulfhydryls and to yield products indicative of hydroxyl radical (.OH) reaction with deoxyribose and dimethyl sulfoxide, is shown herein to induce membrane lipid peroxidation. Peroxynitrite addition to soybean phosphatidylcholine liposomes resulted in malondialdehyde and conjugated diene formation, as well as oxygen consumption. Lipid peroxidation was greater at acidic and neutral pH, with no significant lipid peroxidation occurring above pH 9.5. Addition of ferrous (Fe+2) or ferric (Fe+3) iron did not enhance lipid peroxide formation over that attributable to peroxynitrite alone. Diethylenetetraminepentacetic acid (DTPA) or iron removal from solutions by ion-exchange chromatography decreased conjugated diene formation by 25-50%. Iron did not play an essential role in initiating lipid peroxidation, since DTPA and iron depletion of reaction systems were only partially inhibitory. In contrast, desferrioxamine had an even greater concentration-dependent inhibitory effect, completely abolishing lipid peroxidation at 200 microM. The strong inhibitory effect of desferrioxamine on lipid peroxidation was due to direct reaction with peroxynitrous acid in addition to iron chelation. We conclude that the conjugate acid of peroxynitrite, peroxynitrous acid (ONOOH), and/or its decomposition products, i.e., .OH and nitrogen dioxide (.NO2), initiate lipid peroxidation without the requirement of iron. These observations demonstrate a potential mechanism contributing to O2-(-)and .NO-mediated cytotoxicity.


Archives of Biochemistry and Biophysics | 1992

Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase

Harry Ischiropoulos; Ling Zhu; Jun Chen; Michael Tsai; James C. Martin; Craig D. Smith; Joseph S. Beckman

Peroxynitrite (ONOO-), the reaction product of superoxide (O2-) and nitric oxide (NO), may be a major cytotoxic agent produced during inflammation, sepsis, and ischemia/reperfusion. Bovine Cu,Zn superoxide dismutase reacted with peroxynitrite to form a stable yellow protein-bound adduct identified as nitrotyrosine. The uv-visible spectrum of the peroxynitrite-modified superoxide dismutase was highly pH dependent, exhibiting a peak at 438 nm at alkaline pH that shifts to 356 nm at acidic pH. An equivalent uv-visible spectrum was obtained by Cu,Zn superoxide dismutase treated with tetranitromethane. The Raman spectrum of authentic nitrotyrosine was contained in the spectrum of peroxynitrite-modified Cu,Zn superoxide dismutase. The reaction was specific for peroxynitrite because no significant amounts of nitrotyrosine were formed with nitric oxide (NO), nitrogen dioxide (NO2), nitrite (NO2-), or nitrate (NO3-). Removal of the copper from the Cu,Zn superoxide dismutase prevented formation of nitrotyrosine by peroxynitrite. The mechanism appears to involve peroxynitrite initially reacting with the active site copper to form an intermediate with the reactivity of nitronium ion (NO2+), which then nitrates tyrosine on a second molecule of superoxide dismutase. In the absence of exogenous phenolics, the rate of nitration of tyrosine followed second-order kinetics with respect to Cu,Zn superoxide dismutase concentration, proceeding at a rate of 1.0 +/- 0.1 M-1.s-1. Peroxynitrite-mediated nitration of tyrosine was also observed with the Mn and Fe superoxide dismutases as well as other copper-containing proteins.


Archives of Biochemistry and Biophysics | 1992

Peroxynitrite formation from macrophage-derived nitric oxide

Harry Ischiropoulos; Ling Zhu; Joseph S. Beckman

Peroxynitrite formation by rat alveolar macrophages activated with phorbol 12-myristate 13-acetate was assayed by the Cu,Zn superoxide dismutase-catalyzed nitration of 4-hydroxyphenylacetate. The inhibitor of nitric oxide synthesis N-methyl-L-arginine prevented the Cu,Zn superoxide dismutase-catalyzed nitration of 4-hydroxyphenylacetate by stimulated macrophages, while Cu-depleted Zn superoxide dismutase did not catalyze the formation of 3-nitro-4-hydroxyphenylacetate either in vitro or in the presence of activated macrophages. The rate of phenolic nitration by activated macrophages was 9 +/- 2 pmol x 10(6) cells-1 x min-1 (mean +/- STD). Only 8% of synthetic peroxynitrite was trapped by superoxide dismutase, which suggested that the rate of peroxynitrite formation may have been as high as 0.11 nmol x 10(6) cells-1 x min-1. This upper estimate was consistent with N-methyl-L-arginine increasing the amount of superoxide detected with cytochrome c by 0.12 nmol x 10(6) cells-1 x min-1. The rate of nitrite and nitrate accumulation was 0.10 +/- 0.001 nmol x 10(6) cells-1 x min-1, suggesting that the majority of nitric oxide produced by activated macrophages may have been converted to peroxynitrite. The formation of a relatively long lived, strong oxidant from the reaction of nitric oxide and superoxide in activated macrophages may contribute to inflammatory cell-mediated tissue injury.


Methods in Enzymology | 1994

Oxidative chemistry of peroxynitrite.

Joseph S. Beckman; Jun Chen; Harry Ischiropoulos; John P. Crow

Publisher Summary Nitric oxide (.NO) is an important and largely unrecognized mediator of oxygen radical injury because it contains an unpaired electron that readily combines with many free radicals. Endothelium and neurons produce nitric oxide as an intercellular messenger, which has important roles in vasoregulation and synaptic plasticity. Nitric oxide reacts rapidly with superoxide to form the strong oxidant, peroxynitrite anion (ONOO - ). Activated macrophages and neutrophils can produce nitric oxide and superoxide at similar rates. This chapter presents that essentially all of the nitric oxide produced by rat alveolar macrophages activated with phorbol ester is converted to peroxynitrite. Peroxynitrite is not a free radical because the unpaired electrons on nitric oxide and superoxide have combined to form a new N–O bond in peroxynitrite. Peroxynitrite anion can be stored for weeks in alkaline solution or even entrapped in solid forms. During its decomposition at physiological pH, peroxynitrite can produce some of the strongest oxidants known in a biological system, initiating reactions characteristic of hydroxyl radical, nitronium ion, and nitrogen dioxide. The unusual stability of peroxynitrite as an anion contributes to its toxicity by allowing it to diffuse far from its site of formation while being selectively reactive with cellular targets.


Archives of Biochemistry and Biophysics | 1992

Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite.

Joseph S. Beckman; Harry Ischiropoulos; Ling Zhu; Mark van der Woerd; Craig R. Smith; Jun Chen; Joseph G. Harrison; James C. Martin; Michael Tsai

Superoxide dismutase and Fe3+EDTA catalyzed the nitration by peroxynitrite (ONOO-) of a wide range of phenolics including tyrosine in proteins. Nitration was not mediated by a free radical mechanism because hydroxyl radical scavengers did not reduce either superoxide dismutase or Fe3+EDTA-catalyzed nitration and nitrogen dioxide was not a significant product from either catalyst. Rather, metal ions appear to catalyze the heterolytic cleavage of peroxynitrite to form a nitronium-like species (NO2+). The calculated energy for separating peroxynitrous acid into hydroxide ion and nitronium ion is 13 kcal.mol-1 at pH 7.0. Fe3+EDTA catalyzed nitration with an activation energy of 12 kcal.mol-1 at a rate of 5700 M-1.s-1 at 37 degrees C and pH 7.5. The reaction rate of peroxynitrite with bovine Cu,Zn superoxide dismutase was 10(5) M-1.s-1 at low superoxide dismutase concentrations, but the rate of nitration became independent of superoxide dismutase concentration above 10 microM with only 9% of added peroxynitrite yielding nitrophenol. We propose that peroxynitrite anion is more stable in the cis conformation, whereas only a higher energy species in the trans conformation can fit in the active site of Cu,Zn superoxide dismutase. At high superoxide dismutase concentrations, phenolic nitration may be limited by the rate of isomerization from the cis to trans conformations of peroxynitrite as well as by competing pathways for peroxynitrite decomposition. In contrast, Fe3+EDTA appears to react directly with the cis anion, resulting in greater nitration yields.


Free Radical Biology and Medicine | 1994

Peroxynitrite-mediated oxidation of dihydrorhodamine 123

Neil W. Kooy; James A. Royall; Harry Ischiropoulos; Joseph S. Beckman

Nitric oxide reacts with superoxide to form peroxynitrite, which may be an important mediator of free radical-induced cellular injury. Oxidation of dihydrorhodamine to fluorescent rhodamine is a marker of cellular oxidant production. We investigated the mechanisms of peroxynitrite-mediated formation of rhodamine from dihydrorhodamine. Peroxynitrite at low levels (0-1000 nM) induced a linear, concentration-dependent, oxidation of dihydrorhodamine. Hydroxyl radical scavengers mannitol and dimethylsulfoxide had minimal effect (< 10%) on rhodamine production. Peroxynitrite-mediated formation of rhodamine was not dependent on metal ion catalyzed reactions because studies were performed in metal ion-free buffer and rhodamine formation was not enhanced in the presence of Fe3+ ethylenediaminetetraacetic acid (EDTA). Thus, rhodamine formation appears to be mediated directly by peroxynitrite. Superoxide dismutase slightly enhanced rhodamine production. L-cysteine was an efficient inhibitor (KI approximately 25 microM) of dihydrorhodamine oxidation through competetive oxidation of free sulfhydryls. Urate was also an efficient inhibitor (KI approximately 2.5 microM), possibly by reduction of an intermediate dihydrorhodamine radical and recycling of dihydrorhodamine. Under anaerobic conditions, nitric oxide did not oxidize dihydrorhodamine and inhibited spontaneous oxidation of dihydrorhodamine. In the presence of oxygen, nitric oxide induces a relatively slow oxidation of dihydrorhodamine due to the formation of nitrogen dioxide. We conclude that dihydrorhodamine is a sensitive and efficient trap for peroxynitrite and may serve as a probe for peroxynitrite production.


Journal of Clinical Investigation | 1994

Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury.

Imad Y. Haddad; G. Pataki; Ping Hu; C. Galliani; Joseph S. Beckman; Sadis Matalon

Activated alveolar macrophages and epithelial type II cells release both nitric oxide and superoxide which react at near diffusion-limited rate (6.7 x 10(9) M-1s-1) to form peroxynitrite, a potent oxidant capable of damaging the alveolar epithelium and pulmonary surfactant. Peroxynitrite, but not nitric oxide or superoxide, readily nitrates phenolic rings including tyrosine. We quantified the presence of nitrotyrosine in the lungs of patients with the adult respiratory distress syndrome (ARDS) and in the lungs of rats exposed to hyperoxia (100% O2 for 60 h) using quantitative immunofluorescence. Fresh frozen or paraffin-embedded lung sections were incubated with a polyclonal antibody to nitrotyrosine, followed by goat anti-rabbit IgG coupled to rhodamine. Sections from patients with ARDS (n = 5), or from rats exposed to hyperoxia (n = 4), exhibited a twofold increase of specific binding over controls. This binding was blocked by the addition of an excess amount of nitrotyrosine and was absent when the nitrotyrosine antibody was replaced with nonimmune IgG. In additional experiments we demonstrated nitrotyrosine formation in rat lung sections incubated in vitro with peroxynitrite, but not nitric oxide or reactive oxygen species. These data suggest that toxic levels of peroxynitrite may be formed in the lungs of patients with acute lung injury.


Journal of Clinical Investigation | 2003

Oxidative stress and nitration in neurodegeneration: Cause, effect, or association?

Harry Ischiropoulos; Joseph S. Beckman

Oxidation and nitration of proteins, DNA, and lipids are markers of neurodegeneration in postmortem tissues. It is impossible to determine with certainty using postmortem analysis, whether oxidative stress has a primary role in neurodegeneration or is a secondary end-stage epiphenomenon. Growing evidence suggests that the generation of oxidants does not result simply from an accidental disruption of aerobic metabolism, but rather from an active process crucial for the nonspecific immune defenses of the brain. While essential for survival, these processes may be inappropriately activated to cause neurodegeneration. Neurons are highly susceptible to oxidative stress, which can induce both neuronal necrosis and apoptosis. Oxidants may also have more subtle roles in compromising the integrity of the bloodbrain barrier and in producing reactive changes in astrocytes that further propagate injury. Moreover, oxidative stress appears to provide a critical link between environmental factors, such as exposure to pesticides, herbicides, and heavy metals, and endogenous and genetic risk factors in the pathogenic mechanisms of neurodegeneration, particularly in Parkinson disease. Here, we discuss some recent insights into the diverse roles and controversies about the role of oxidants in neurodegeneration. A better understanding of the role of oxidants in neurodegeneration still holds a largely unfulfilled potential to reduce the burden of both acute and chronic neurodegeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Selective fluorescent imaging of superoxide in vivo using ethidium-based probes

Kristine M. Robinson; Michael S. Janes; Mariana Pehar; Jeffrey S. Monette; Meredith F. Ross; Tory M. Hagen; Michael P. Murphy; Joseph S. Beckman

The putative oxidation of hydroethidine (HE) has become a widely used fluorescent assay for the detection of superoxide in cultured cells. By covalently joining HE to a hexyl triphenylphosphonium cation (Mito-HE), the HE moiety can be targeted to mitochondria. However, the specificity of HE and Mito-HE for superoxide in vivo is limited by autooxidation as well as by nonsuperoxide-dependent cellular processes that can oxidize HE probes to ethidium (Etd). Recently, superoxide was shown to react with HE to generate 2-hydroxyethidium [Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J. & Kalyanaraman, B. (2003) Free Radic. Biol. Med. 34, 1359–1368]. However, 2-hydroxyethidium is difficult to distinguish from Etd by conventional fluorescence techniques exciting at 510 nm. While investigating the oxidation of Mito-HE by superoxide, we found that the superoxide product of both HE and Mito-HE could be selectively excited at 396 nm with minimal interference from other nonspecific oxidation products. The oxidation of Mito-HE monitored at 396 nm by antimycin-stimulated mitochondria was 30% slower than at 510 nm, indicating that superoxide production may be overestimated at 510 nm by even a traditional superoxide-stimulating mitochondrial inhibitor. The rate-limiting step for oxidation by superoxide was 4 × 106 M−1·s−1, which is proposed to involve the formation of a radical from Mito-HE. The rapid reaction with a second superoxide anion through radical–radical coupling may explain how Mito-HE and HE can compete for superoxide in vivo with intracellular superoxide dismutases. Monitoring oxidation at both 396 and 510 nm of excitation wavelengths can facilitate the more selective detection of superoxide in vivo.


American Journal of Respiratory and Critical Care Medicine | 1995

Evidence for in vivo peroxynitrite production in human acute lung injury.

Neil W. Kooy; James A. Royall; Yao Z. Ye; David R. Kelly; Joseph S. Beckman

Oxidant-mediated toxicity resulting from acute pulmonary inflammation has been demonstrated in acute lung injury. A potent biological oxidant, peroxynitrite, is formed by the near diffusion-limited reaction of nitric oxide with superoxide. In addition to having hydroxyl radical-like oxidative reactivity, peroxynitrite is capable of nitrating phenolic rings, including protein-associated tyrosine residues. Nitric oxide does not directly nitrate tyrosine residues, therefore, demonstration of tissue nitrotyrosine residues infers the action of peroxynitrite or related nitrogen-centered oxidants. Lung tissue was obtained from formalin-fixed, paraffin-embedded autopsy specimens, and specific polyclonal and monoclonal antibodies to nitrotyrosine were visualized by diaminobenzidene-peroxidase staining. Acute lung injury resulted in intense staining throughout the lung, including lung interstitium, alveolar epithelium, proteinaceous alveolar exudate, and inflammatory cells. In addition, staining of the vascular endothelium and subendothelial tissues was present in those patients with sepsis-induced acute lung injury. Antibody binding was blocked by coincubation with nitrotyrosine or nitrated bovine serum albumin but not by aminotyrosine, phosphotyrosine, or bovine serum albumin. Reduction of tissue nitrotyrosine to aminotyrosine by sodium hydrosulfite also blocked antibody binding. In control specimens with no overt pulmonary disease, there was only slight staining of the alveolar septum. These results demonstrate that nitrogen-derived oxidants are formed in human acute lung injury and suggest that peroxynitrite may be an important oxidant in inflammatory lung disease.

Collaboration


Dive into the Joseph S. Beckman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvaro G. Estévez

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

John P. Crow

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Mariana Pehar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Ischiropoulos

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jun Chen

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Marcelo R. Vargas

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sadis Matalon

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge