Joseph S. M. Samec
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph S. M. Samec.
Chemistry: A European Journal | 2002
Joseph S. M. Samec; Jan-E. Bäckvall
Transfer hydrogenation of a variety of different imines to the corresponding amines by propan-2-ol in benzene catalyzed by [Ru2(CO)4(mu-H)(C4Ph4COHOCC4Ph4)] (1) has been studied. The reaction is highly efficient with turnover frequencies of over 800 per hour, and the product amines were obtained in excellent yields. A remarkable concentration dependence of propan-2-ol was observed when the reaction was run in benzene as cosolvent. An optimum was obtained at 24 equivalents of propan-2-ol to imine, and further increase of the propan-2-ol led to a dramatic decrease in rate. Also the use of polar cosolvents with 24 equivalents of propan-2-ol gave a low rate. It was found that ketimines react faster than aldimines and that electron-donating substituents on the imine increase the rate of the catalytic transfer hydrogenation. Electron-withdrawing substituents decreased the rate. An isomerization was observed with imines having an alpha-hydrogen at the N-alkyl substituent, which is in accordance with a mechanism involving a ruthenium-amine intermediate. It was demonstrated that the ruthenium-amine complex from alpha-methylbenzylamine, corresponding to the postulated intermediate, can replace 1 as catalyst in the transfer hydrogenation of imines. A primary deuterium isotope effect of kCH/CD = 2.7 +/- 0.25 was observed when 2-deuterio-propan-2-ol was used in place of propan-2-ol in the transfer hydrogenation of N-phenyl-(1-phenylethylidene)amine.
Tetrahedron Letters | 2002
Oscar Pàmies; Alida H. Éll; Joseph S. M. Samec; Nina Hermanns; Jan-E. Bäckvall
An efficient and mild Ru-catalyzed racemization of amines under transfer hydrogenation conditions is reported. A significant advantage of this new procedure is that the ruthenium hydrogen transfer catalysts allow high functional group tolerance. Interestingly, both primary and secondary amines were efficiently racemized under these conditions. We also report on the combination of this new amine racemization with an enzymatic kinetic resolution of primary amines.
Chemsuschem | 2014
Maxim V. Galkin; Joseph S. M. Samec
A tandem organosolv pulping and Pd-catalysed transfer hydrogenolysis depolymerisation and deoxygenation has been developed. The tandem process generated 2-methoxy-4-(prop-1-enyl)phenol in 23% yield (92% theoretical monomer yield) starting from pine wood and 2,6-dimethoxy-4-(prop-1-enyl)phenol in 49% yield (92% theoretical monomer yield) starting from birch wood. Only endogenous hydrogen from wood was consumed, and the reaction was performed using green solvents.
Chemsuschem | 2016
Maxim V. Galkin; Joseph S. M. Samec
Current processes for the fractionation of lignocellulosic biomass focus on the production of high-quality cellulosic fibers for paper, board, and viscose production. The other fractions that constitute a major part of lignocellulose are treated as waste or used for energy production. The transformation of lignocellulose beyond paper pulp to a commodity (e.g., fine chemicals, polymer precursors, and fuels) is the only feasible alternative to current refining of fossil fuels as a carbon feedstock. Inspired by this challenge, scientists and engineers have developed a plethora of methods for the valorization of biomass. However, most studies have focused on using one single purified component from lignocellulose that is not currently generated by the existing biomass fractionation processes. A lot of effort has been made to develop efficient methods for lignin depolymerization. The step to take this fundamental research to industrial applications is still a major challenge. This review covers an alternative approach, in which the lignin valorization is performed in concert with the pulping process. This enables the fractionation of all components of the lignocellulosic biomass into valorizable streams. Lignocellulose fractions obtained this way (e.g., lignin oil and glucose) can be utilized in a number of existing procedures. The review covers historic, current, and future perspectives, with respect to catalytic lignocellulose fractionation processes.
Chemcatchem | 2014
Maxim V. Galkin; Supaporn Sawadjoon; Volker Rohde; Monali Dawange; Joseph S. M. Samec
A mild and robust heterogeneous palladium‐catalyzed CO bond cleavage of 2‐aryloxy‐1‐arylethanols using formic acid as reducing agent in air was developed. The cleaved products were isolated in 92–98 % yield; and by slightly varying the reaction conditions, a ketone, an alcohol, or an alkane can be generated in near‐quantitative yield. This reaction is applicable to cleaving the β‐O‐4′‐ether bond found in lignin polymers of different origin. The reaction was performed on a lignin polymer model to generate either the monomeric aryl ketone or alkane in a quantitative yield. Moderate depolymerization was achieved with native lignin at similar reaction conditions. Mechanistic studies under kinetic control indicate that an initial palladium‐catalyzed dehydrogenation of the alcohol is followed by insertion of palladium to an enol equivalent. A palladium–formato complex reductively cleaves the palladium–enolate complex to generate the ketone.
Chemsuschem | 2015
Maxim V. Galkin; Christian Dahlstrand; Joseph S. M. Samec
A Pd/C catalyzed redox neutral C¢O bond cleavage of 2-aryloxy-1-arylethanols has been developed. The reactions are carried out at 80 °C, in air, using a green solvent system to yield the aryl ketones in near quantitative yields. Addition of catalytic amounts of a hydrogen source to the reaction mixture activates the catalyst to proceed through a low energy barrier pathway. Initial studies support a transfer hydrogenolysis reaction mechanism that proceeds through an initial dehydrogenation followed by an enol adsorption to Pd/C and a reductive C¢O bond cleavage.
Chemsuschem | 2016
Maxim V. Galkin; Arjan T. Smit; Elena Subbotina; Konstantin A. Artemenko; Jonas Bergquist; Wouter J. J. Huijgen; Joseph S. M. Samec
The pulping industry could become a biorefinery if the lignin and hemicellulose components of the lignocellulose are valorized. Conversion of lignin into well-defined aromatic chemicals is still a major challenge. Lignin depolymerization reactions often occur in parallel with irreversible condensation reactions of the formed fragments. Here, we describe a strategy that markedly suppresses the undesired condensation pathways and allows to selectively transform lignin into a few aromatic compounds. Notably, applying this strategy to woody biomass at organosolv pulping conditions, the hemicellulose, cellulose, and lignin were separated and in parallel the lignin was transformed into aromatic monomers. In addition, we were able to utilize a part of the lignocellulose as an internal source of hydrogen for the reductive lignin transformations. We hope that the presented methodology will inspire researchers in the field of lignin valorization as well as pulp producers to develop more efficient biomass fractionation processes in the future.
Chemcatchem | 2015
Monali Dawange; Maxim V. Galkin; Joseph S. M. Samec
A mild and chemoselective oxidation of the α‐alcohol in β‐O‐4′‐ethanoaryl and β‐O‐4′‐glycerolaryl ethers has been developed. The benzylic alcohols were selectively dehydrogenated to the corresponding ketones in 60–93 % yield. A one‐pot selective route to aryl ethyl ketones was performed. The catalytic system comprises recyclable heterogeneous palladium, mild reaction conditions, green solvents, and oxygen in air as oxidant. Catalytic amounts of a coordinating polyol were found pivotal for an efficient aerobic oxidation.
Chemistry: A European Journal | 2008
Joseph S. M. Samec; Robert H. Grubbs
A series of bidentate ruthenium-based NHC complexes with the general formula [(H(2)IMes)(kappa(2)-L-COO)ClRu=CHPh)], where L is either PAr(3), HNR(2), or ROR, were prepared from commercially available [(H(2)IMes)(PCy(3))Cl(2)Ru(CHPh)] (2) and the appropriate ligand. The catalytic activities of the complexes were evaluated in ring-closing metathesis reactions. The type of donor ligand has a major impact on both the initiation behavior and also the stability of the complexes. Upon addition of CuCl to the reaction mixture the initiation is improved for the phosphine or amine containing chelates. For the P,O-chelate, the fast initiation was followed by decomposition. In the case of the N,O-containing chelate, a stable catalytic system was achieved. Trapping experiments support that the nitrogen lone-pair reversibly coordinates CuCl during the reaction.
Chemistry-an Asian Journal | 2013
Srijit Biswas; Joseph S. M. Samec
In this study, we investigate the effect of the electrophiles and the nucleophiles for eight catalysts in the catalytic SN 1 type substitution of alcohols with different degree of activation by sulfur-, carbon-, oxygen-, and nitrogen-centered nucleophiles. The catalysts do not show any general variance in efficiency or selectivity with respect to the alcohols and follow the trend of alcohol reactivity. However, when it comes to the nucleophile, the eight catalysts show general and specific variances in the efficiency and selectivity to perform the desired substitution. Interestingly, the selectivity of the alcohols to produce the desired substitution products was found to be independent of the electrophilicity of the generated carbocations but highly dependent on the ease of formation of the cation. Catalysts based on iron(III), bismuth(III), and gold(III) show higher conversions for S-, C-, and N-centered nucleophiles, and Bi(III) was the most efficient catalyst in all combinations. Catalysts based on rhenium(I) or rhenium(VII), palladium(II), and lanthanum(III) were the most efficient in performing the nucleophilic substitution on the various alcohols with the O-centered nucleophiles. These catalysts generate the symmetrical ether as a by-product from the reactions of S-, C-, and N-centered nucleophiles as well, resulting in lower chemoselectivity.