Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph S. Marino is active.

Publication


Featured researches published by Joseph S. Marino.


Trends in Endocrinology and Metabolism | 2011

Central insulin and leptin-mediated autonomic control of glucose homeostasis

Joseph S. Marino; Yong Xu; Jennifer W. Hill

Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis.


Endocrinology | 2013

Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

Xiaoliang Qiu; Abigail R. Dowling; Joseph S. Marino; Latrice D. Faulkner; Benjamin Bryant; Jens C. Brüning; Carol F. Elias; Jennifer W. Hill

Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.


American Journal of Physiology-endocrinology and Metabolism | 2016

The glucocorticoid receptor: cause of or cure for obesity?

Kezia John; Joseph S. Marino; Edwin R. Sanchez; Terry D. Hinds

Glucocorticoid hormones (GCs) are important regulators of lipid metabolism, promoting lipolysis with acute treatment but lipogenesis with chronic exposure. Conventional wisdom posits that these disparate outcomes are mediated by the classical glucocorticoid receptor GRα. There is insufficient knowledge of the GC receptors (GRα and GRβ) in metabolic conditions such as obesity and diabetes. We present acute models of GC exposure that induce lipolysis, such as exercise, as well as chronic-excess models that cause obesity and lipid accumulation in the liver, such as hepatic steatosis. Alternative mechanisms are then proposed for the lipogenic actions of GCs, including induction of GC resistance by the GRβ isoform, and promotion of lipogenesis by GC activation of the mineralocorticoid receptor (MR). Finally, the potential involvement of chaperone proteins in the regulation of adipogenesis is considered. This reevaluation may prove useful to future studies on the steroidal basis of adipogenesis and obesity.


Journal of Biological Chemistry | 2014

Glucocorticoid receptor β stimulates Akt1 growth pathway by attenuation of PTEN.

Lance A. Stechschulte; Leah M. Wuescher; Joseph S. Marino; Jennifer W. Hill; Charis Eng; Terry D. Hinds

Background: The glucocorticoid receptor β (GRβ) is a positive regulator of growth. Results: GRβ suppression of PTEN resulted in enhanced phosphorylation of Akt and growth. Conclusion: GRβ enhances insulin-induced proliferation by suppressing PTEN and activating Akt1. Significance: GRβ suppression of PTEN indicates that it has an important role in growth factor signaling and potentially cancer. Glucocorticoids (GCs) are known inhibitors of proliferation and are commonly prescribed to cancer patients to inhibit tumor growth and induce apoptosis via the glucocorticoid receptor (GR). Because of alternative splicing, the GR exists as two isoforms, GRα and GRβ. The growth inhibitory actions of GCs are mediated via GRα, a hormone-induced transcription factor. The GRβ isoform, however, lacks helix 12 of the ligand-binding domain and cannot bind GCs. While we have previously shown that GRβ mRNA is responsive to insulin, the role of GRβ in insulin signaling and growth pathways is unknown. In the present study, we show that GRβ suppresses PTEN expression, leading to enhanced insulin-stimulated growth. These characteristics were independent of the inhibitory qualities that have been reported for GRβ on GRα. Additionally, we found that GRβ increased phosphorylation of Akt basally, which was further amplified following insulin treatment. In particular, GRβ specifically targets Akt1 in growth pathways. Our results demonstrate that the GRβ/Akt1 axis is a major player in insulin-stimulated growth.


PLOS ONE | 2013

Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response

Christopher L. Dearth; Qingnian Goh; Joseph S. Marino; Peter A. Cicinelli; María José Torres-Palsa; Philippe Pierre; Randall G. Worth; Francis X. Pizza

We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.


PLOS ONE | 2012

Adipocyte Dysfunction in a Mouse Model of Polycystic Ovary Syndrome (PCOS): Evidence of Adipocyte Hypertrophy and Tissue-Specific Inflammation

Joseph S. Marino; Jeffrey Iler; Abigail R. Dowling; Streamson C. Chua; Jens C. Brüning; Roberto Coppari; Jennifer W. Hill

Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepRPOMC mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepRPOMC mice showed reduced or absent ovulation. IR/LepRPOMC mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepRPOMC mice, which develop a PCOS-like phenotype. Thus, IR/LepRPOMC mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.


Nutrition & Diabetes | 2012

ApoA-1 mimetic restores adiponectin expression and insulin sensitivity independent of changes in body weight in female obese mice

Joseph S. Marino; S J Peterson; M Li; L Vanella; K Sodhi; Jennifer W. Hill; N G Abraham

Background:We examined the ability of the apolipoprotein AI mimetic peptide L-4F to improve the metabolic state of female and male ob mice and the mechanisms involved.Methods:Female and male lean and obese (ob) mice were administered L-4F or vehicle for 6 weeks. Body weight was measured weekly. Fat distribution, serum cytokines and markers of cardiovascular dysfunction were determined at the end of treatment.Results:L-4F significantly decreased serum interleukin (IL)-6, tumor necrosis factor-α and IL-1β. L-4F improved vascular function, and increased serum adiponectin levels and insulin sensitivity compared with untreated mice. In addition, L-4F treatment increased heme oxygenase (HO)-1, pAKT and pAMPK levels in kidneys of ob animals. pAKT and pAMPK levels were significantly reduced in the presence of an HO inhibitor. Interestingly, L4F did not alter body weight in female mice, but caused a significant reduction in males.Conclusions:L-4F treatments reduced cardiovascular risk factors and improved insulin sensitivity in female ob mice independent of body fat changes. Reduced inflammatory cytokine levels accompanied by increased HO activity, serum adiponectin and improved insulin sensitivity suggest that L-4F may promote the conversion of visceral fat to a healthier phenotype. Therefore, L-4F appears to be a promising therapeutic strategy for treating both cardiovascular risk factors and insulin resistance in obese patients of either gender.


International Journal of Molecular Sciences | 2016

Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

Terry D. Hinds; Bailey Peck; Evan Shek; Steven Stroup; Jennifer Hinson; Susan Arthur; Joseph S. Marino

Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.


BMC Cell Biology | 2013

Suppression of protein kinase C theta contributes to enhanced myogenesis In vitro via IRS1 and ERK1/2 phosphorylation

Joseph S. Marino; Terry D. Hinds; Rachael A. Potter; Eric Ondrus; Jeremy L Onion; Abigail R. Dowling; Thomas J. McLoughlin; Edwin R. Sanchez; Jennifer W. Hill

BackgroundDifferentiation and fusion of skeletal muscle myoblasts into multi-nucleated myotubes is required for neonatal development and regeneration in adult skeletal muscle. Herein, we report novel findings that protein kinase C theta (PKCθ) regulates myoblast differentiation via phosphorylation of insulin receptor substrate-1 and ERK1/2.ResultsIn this study, PKCθ knockdown (PKCθshRNA) myotubes had reduced inhibitory insulin receptor substrate-1 ser1095 phosphorylation, enhanced myoblast differentiation and cell fusion, and increased rates of protein synthesis as determined by [3H] phenylalanine incorporation. Phosphorylation of insulin receptor substrate-1 ser632/635 and extracellular signal-regulated kinase1/2 (ERK1/2) was increased in PKCθshRNA cells, with no change in ERK5 phosphorylation, highlighting a PKCθ-regulated myogenic pathway. Inhibition of PI3-kinase prevented cell differentiation and fusion in control cells, which was attenuated in PKCθshRNA cells. Thus, with reduced PKCθ, differentiation and fusion occur in the absence of PI3-kinase activity. Inhibition of the ERK kinase, MEK1/2, impaired differentiation and cell fusion in control cells. Differentiation was preserved in PKCθshRNA cells treated with a MEK1/2 inhibitor, although cell fusion was blunted, indicating PKCθ regulates differentiation via IRS1 and ERK1/2, and this occurs independently of MEK1/2 activation.ConclusionCellular signaling regulating the myogenic program and protein synthesis are complex and intertwined. These studies suggest that PKCθ regulates myogenic and protein synthetic signaling via the modulation of IRS1and ERK1/2 phosphorylation. Myotubes lacking PKCθ had increased rates of protein synthesis and enhanced myotube development despite reduced activation of the canonical anabolic-signaling pathway. Further investigation of PKCθ regulated signaling may reveal important interactions regulating skeletal muscle health in an insulin resistant state.


Journal of Biological Chemistry | 2016

Glucocorticoid Receptor β Induces Hepatic Steatosis by Augmenting Inflammation and Inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) α

Joseph S. Marino; Lance A. Stechschulte; David E. Stec; Andrea L. Nestor-Kalinoski; Sydni Coleman; Terry D. Hinds

Glucocorticoids (GCs) regulate energy supply in response to stress by increasing hepatic gluconeogenesis during fasting. Long-term GC treatment induces hepatic steatosis and weight gain. GC signaling is coordinated via the GC receptor (GR) GRα, as the GRβ isoform lacks a ligand-binding domain. The roles of the GR isoforms in the regulation of lipid accumulation is unknown. The purpose of this study was to determine whether GRβ inhibits the actions of GCs in the liver, or enhances hepatic lipid accumulation. We show that GRβ expression is increased in adipose and liver tissues in obese high-fat fed mice. Adenovirus-mediated delivery of hepatic GRβ overexpression (GRβ-Ad) resulted in suppression of gluconeogenic genes and hyperglycemia in mice on a regular diet. Furthermore, GRβ-Ad mice had increased hepatic lipid accumulation and serum triglyceride levels possibly due to the activation of NF-κB signaling and increased tumor necrosis factor α (TNFα) and inducible nitric-oxide synthase expression, indicative of enhanced M1 macrophages and the development of steatosis. Consequently, GRβ-Ad mice had increased glycogen synthase kinase 3β (GSK3β) activity and reduced hepatic PPARα and fibroblast growth factor 21 (FGF21) expression and lower serum FGF21 levels, which are two proteins known to increase during fasting to enhance the burning of fat by activating the β-oxidation pathway. In conclusion, GRβ antagonizes the GC-induced signaling during fasting via GRα and the PPARα-FGF21 axis that reduces fat burning. Furthermore, hepatic GRβ increases inflammation, which leads to hepatic lipid accumulation.

Collaboration


Dive into the Joseph S. Marino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bailey Peck

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanette M. Bennett

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lydia G. Roos

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Maren J. Coffman

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Susan T. Arthur

University of North Carolina at Charlotte

View shared research outputs
Researchain Logo
Decentralizing Knowledge