Joseph Selvin
Pondicherry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Selvin.
Colloids and Surfaces B: Biointerfaces | 2013
Ganesan Sathiyanarayanan; G. Seghal Kiran; Joseph Selvin
The polysaccharides are emerging as stabilizing and reducing agents for nanoparticles synthesis, however the commercial polysaccharides are not economically viable. Therefore, the exopolysaccharide from microbial origin such as bioflocculants are promising alternate for the synthesis and stabilization of nanoparticles. In this report, a bioflocculant (MSBF17) was produced from marine sponge-associated Bacillus subtilis MSBN17 under submerged fermentation using the economical substrates. The production was statistically optimized with most significant factors such as palm jaggery, NH(4)NO(2), K(2)HPO(4) and NaCl. The maximum bioflocculant production obtained with statistically optimized medium was 13.42 g/l. Based on the biochemical composition and FT-IR analysis, the flocculant compound was predicted as a polysaccharide derivative. The flocculating activity of the MSBF17 was invariably considerable at high salinity and temperature. It was found that the nano-scale silver can be synthesized in reverse micelles using the bioflocculant as stabilizer. The silver nanoparticles (AgNPs) were characterized by UV-spectroscopy, FT-IR and TEM analysis. The AgNPs were spherical shaped (60 nm) and stable for 5 months. Therefore, the bioflocculant-mediated synthesis of nanomaterials can be considered as environmental benign greener approach.
International Journal of Biological Macromolecules | 2013
Ganesan Sathiyanarayanan; G. Seghal Kiran; Joseph Selvin; Ganesan Saibaba
A marine sponge-associated bacterium Bacillus megaterium MSBN04 was used for the production of polyhydroxybutyrate (PHB) under solid state culture (SSC). A central composite design (CCD) was employed to optimize the production medium and to find out the interactive effects of four independent variables, viz. tapioca industry waste, palm jaggery, horse gram flour and trace element solution on PHB production. The maximum yield of PHB 8.637 mg g(-1) of substrate (tapioca industry waste) was achieved from biomass 15.203 mg g(-1) of substrate, using statistically optimized medium. The horse gram flour (nitrogen source) and trace element solution were found to be critical control factors for PHB synthesis. The (1)H NMR analysis revealed that the polymer was a PHB monomer. PHB obtained from this study having high molecular weight (6.7×10(5) Da) with low polydispersity index (PDI) value (1.71) and produced PHB was used to synthesize PHB polymeric nanoparticles using solvent displacement approach. Therefore, B. megaterium MSBN04 is an ideal candidate that can be exploited biotechnologically for the commercial production of PHB under solid state culture.
International Journal of Biological Macromolecules | 2013
Ganesan Sathiyanarayanan; Ganesan Saibaba; G. Seghal Kiran; Joseph Selvin
The important biological macromolecule polyhydroxybutyrate (PHB) producing Bacillus subtilis was isolated from the marine sponge Callyspongia diffusa and identified by means of 16S rRNA analysis. The central composite design (CCD) was used to optimize the PHB production using cheap raw materials such as pulp industry waste (PIW), tamarind kernel powder (TKP), palm jaggery (PJ) and green gram flour (GGF). The extracted polymer was characterized by (1)H NMR analysis. The PIW was fed at three different intervals and the maximum production of PHB (19.08g/L) was attained after a period of 40h of incubation of B. subtilis. Dissolved oxygen, sodium chloride and nitrogen source were found to be the critical control factors that affected the PHB polymer production. The present investigation demonstrates an inexpensive model of producing PHB green thermoplastics in vitro for biomedical applications.
Critical Reviews in Biotechnology | 2015
George Seghal Kiran; Arun Shivanth Ninawe; Anuj Nishanth Lipton; Vijayalakshmi Pandian; Joseph Selvin
Abstract Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.
RSC Advances | 2014
Ganesan Sathiyanarayanan; Venkatasamy Vignesh; Ganesan Saibaba; Annadurai Vinothkanna; Krishnamoorthy Dineshkumar; Madepalli Byrappa gowdu Viswanathan; Joseph Selvin
In the present study, a marine sponge-associated endosymbiotic bacterium Bacillus megaterium MSBN04 was evaluated for exopolysaccharide (EPS) production. The production process was optimized by central composite design (CCD). The productivity was increased up to 5.62 g L−1 with sucrose as sole carbon source. The secreted EPS was characterized by NMR analysis, confirming the presence of monosaccharide units such as α-D-glucose and α-D-galactose, which further confirms that the secreted EPS is a heteropolysaccharide. The purified EPS showed considerable flocculating activity (45.41%) with 4 mg L−1 of EPS. Using EPS as reducing and stabilizing agent, gold nanoparticles (AuNPs) were synthesized. The synthesized AuNPs (5–20 nm) were of spherical crystalline nature and capped with an EPS layer and were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The synthesis of AuNPs was dependent on the concentration of EPS. The synthesized AuNPs showed significant antibacterial activity against clinical pathogenic bacteria. Hence, EPS-mediated synthesis of AuNPs is an alternative approach to chemical synthesis and thus it is an environmentally benign, greener and economical approach.
Microbial Cell Factories | 2014
George Seghal Kiran; Anuj Nishanth Lipton; Sethu Priyadharshini; Kumar Anitha; Lucía Elizabeth Cruz Suárez; Mariadhas Valan Arasu; Ki Choon Choi; Joseph Selvin; Naif Abdullah Al-Dhabi
BackgroundVibrio pathogens are causative agents of mid-culture outbreaks, and early mortality syndrome and secondary aetiology of most dreadful viral outbreaks in shrimp aquaculture. Among the pathogenic vibrios group, Vibrio alginolyticus and V. harveyi are considered as the most significant ones in the grow-out ponds of giant black tiger shrimp Penaeus monodon in India. Use of antibiotics was banned in many countries due to the emergence of antibiotic-resistant strains and accumulation of residual antibiotics in harvested shrimp. There is an urgent need to consider the use of alternative antibiotics for the control of vibriosis in shrimp aquaculture. Biofilm formation is a pathogenic and/or establishment mechanism of Vibrio spp. This study aims to develop novel safe antibiofilm and/or antiadhesive process using PHB to contain vibrios outbreaks in shrimp aquaculture.ResultsIn this study a poly-hydroxy butyrate (PHB) polymer producing bacterium Brevibacterium casei MSI04 was isolated from a marine sponge Dendrilla nigra and production of PHB was optimized under submerged-fermentation (SmF) conditions. The effect of carbon, nitrogen and mineral sources on PHB production and enhanced production of PHB by response surface methods were demonstrated. The maximum PHB accumulation obtained was 6.74 g/L in the optimized media containing 25 g/L starch as carbon source, 96 h of incubation, 35°C and 3% NaCl. The highest antiadhesive activity upto 96% was recorded against V. vulnificus, and V. fischeri, followed by 92% against V. parahaemolyticus and V. alginolyticus and 88% inhibition was recorded against V. harveyi.ConclusionIn this study, a thermostable biopolymer was chemically characterized as PHB based on 1HNMR spectra, FT-IR and GC-MS spectra. The NMR spectra revealed that the polymer was an isocratic homopolymer and it also confirmed that the compound was PHB. The antiadhesive activity of PHB was determined in microtitre plate assay and an effective concentration (EC) of PHB (200 μl containing 0.6 mg PHB) was confirmed by confocal laser scanning microscopic analysis of vibrio biofilm on pre-treated glass and polystyrene surfaces. This is a first report on anti-adhesive activity of PHB against prominent vibrio pathogens in shrimp aquaculture.
Bioengineered bugs | 2014
George Seghal Kiran; Anuj Nishanth Lipton; Jonathan Kennedy; Alan D. W. Dobson; Joseph Selvin
A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50–70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies.
Bioprocess and Biosystems Engineering | 2014
Ganesan Sathiyanarayanan; R. Gandhimathi; Balu Sabarathnam; G. Seghal Kiran; Joseph Selvin
Twenty-nine actinobacterial strains were isolated from marine sponge Spongia officinalis and screened for antagonistic activity against various bacterial and fungal pathogens. The active antibiotic producer MAPS15 was identified as Streptomyces sp. using 16S rRNA phylogenetic analysis. The critical control factors were selected from Plackett–Burman (PB) factorial design and the bioprocess medium was optimized by central composite design (CCD) for the production of bioactive metabolite from Streptomyces sp. MAPS15. The maximum biomass and active compound production obtained with optimized medium was 6.13xa0g/L and 62.41xa0mg/L, respectively. The economical carbon source, paddy straw was applied for the enhanced production of bioactive compound. The purified active fraction was characterized and predicted as pyrrolidone derivative which showed broad spectrum of bioactivity towards indicator organisms. The predicted antimicrobial spectra suggested that the Streptomyces sp. MAPS15 can produce a suite of novel antimicrobial drugs.
3 Biotech | 2015
Asha Dhasayan; Joseph Selvin; Seghal G. Kiran
Marine-derived biosurfactants have gained significant attention due to their structural and functional diversity. Biosurfactant production was performed using bacteria associated with Callyspongia diffusa, a marine sponge inhabiting the southern coast of India. A total of 101 sponge-associated bacteria were isolated on different media, of which 29 isolates showed positive result for biosurfactant production. Among the 29 positive isolates, four were selected based on highest emusification activity and were identified based on 16S rDNA sequence analysis. These isolates were identified as Bacillus subtilis MB-7, Bacillus amyloliquefaciens MB-101, Halomonas sp. MB-30 and Alcaligenes sp. MB-I9. The 16S rDNA nucleotide sequences were deposited in GenBank with accession numbers KF493730, KJ540939, KJ414418 and KJ540940, respectively. Based on the highest oil displacement activity and effective surface tension reduction potential, the isolate B. amyloliquefaciens MB-101 was selected for further optimization and structural delineation. The production of biosurfactant by the isolate was significantly enhanced up to 6.76xa0g/l with optimal concentration values of 2.83xa0% for glycerol, 2.65xa0% for peptone, 20.11xa0mM for ferrous sulfate and 74xa0h of incubation by employing factorial design. The structural features of the purified biosurfactant from B. amyloliquefaciens MB-101 showed similarity with lipopeptide class of biosurfactant. In conclusion, the present study emphasizes the utilization of marinexa0sponge-associated bacteria for the production of biosurfactant that may find various applications.
BMC Biotechnology | 2014
George Seghal Kiran; Lipton Anuj Nishanth; Sethu Priyadharshini; Kumar Anitha; Joseph Selvin
BackgroundIron is an essential element in several pathways of microbial metabolism, and therefore low iron toxicity is expected on the usage of Fe nanoparticles (NPs). This study aims to determine the effect of Fe NPs on biosurfactant production by marine actinobacterium Nocardiopsis sp. MSA13A under solid state culture. Foam method was used in the production of Fe NPs which were long and fiber shaped in nature.ResultsThe SEM observation showed non toxic nature of Fe NPs as no change in the morphology of the filamentous structure of Nocardiopsis MSA13A. The production of biosurfactant by Nocardiopsis MSA13A under solid state culture supplemented with Fe NPs increased to 80% over control. The biosurfactant produced by Nocardiopsis MSA13A was characterized as glycolipid derivative which effectively disrupted the pre-formed biofilm of Vibrio pathogen.ConclusionThe use of metal NPs as supplement would reduce the impact of non-metallic ions of the metal salts in a fermentation process. This would ultimately useful to achieve greener production process for biosurfactants. The present results are first report on the optimization of biosurfactant production under SSC using Fe NPs.