Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph W. Brewer is active.

Publication


Featured researches published by Joseph W. Brewer.


Journal of Biological Chemistry | 2002

Activation of an Unfolded Protein Response during Differentiation of Antibody-secreting B Cells

Jennifer N. Gass; Nicole M. Gifford; Joseph W. Brewer

The unfolded proteinresponse pathway (UPR) is believed to detect and compensate for excessive protein accumulation in the endoplasmic reticulum (ER). The UPR can be induced by pharmacological agents that perturb ER functions, but may also occur during cellular developmental processes such as the transition of B-lymphocytes into antibody-secreting plasma cells. Here we show that major UPR components are activated in B cells stimulated to secrete antibody. Increased expression of UPR targets including the ER chaperones BiP and GRP94 and the transcription factor XBP-1 initiates early in the differentiation program prior to up-regulated synthesis of Ig chains. Furthermore, these same kinetics are observed during differentiation for cleavage of the ER-localized ATF6α protein and splicing of XBP-1 mRNA to generate p50ATF6α and p54XBP-1, the two known UPR transcriptional activators. All of these UPR events reach maximal levels once Ig synthesis and secretion are markedly induced. Interestingly, these events are not accompanied by expression of CHOP, a transcription factor induced by ER stress agents commonly used to investigate the UPR. These results suggest that a physiological UPR elicited during differentiation of B-lymphocytes into high-rate secretory cells may be distinct from the UPR defined by agents that disrupt protein maturation in the ER.


Journal of Biological Chemistry | 2007

Coordinate Regulation of Phospholipid Biosynthesis and Secretory Pathway Gene Expression in XBP-1(S)-induced Endoplasmic Reticulum Biogenesis

Rungtawan Sriburi; Hemamalini Bommiasamy; Gerald L. Buldak; Gregory R. Robbins; Matthew W. Frank; Suzanne Jackowski; Joseph W. Brewer

Development of the expansive endoplasmic reticulum (ER) present in specialized secretory cell types requires X-box-binding protein-1 (Xbp-1). Enforced expression of XBP-1(S), a transcriptional activator generated by unfolded protein response-mediated splicing of Xbp-1 mRNA, is sufficient to induce proliferation of rough ER. We previously showed that XBP-1(S)-induced ER biogenesis in fibroblasts correlates with increased production of phosphatidylcholine (PtdCho), the primary phospholipid of the ER membrane, and enhanced activities of the choline cytidylyltransferase (CCT) and cholinephosphotransferase enzymes in the cytidine diphosphocholine (CDP-choline) pathway of PtdCho biosynthesis. Here, we report that the level and synthesis of CCT, the rate-limiting enzyme in the CDP-choline pathway, is elevated in fibroblasts overexpressing XBP-1(S). Furthermore, overexpression experiments demonstrated that raising the activity of CCT, but not cholinephosphotransferase, is sufficient to augment PtdCho biosynthesis in fibroblasts, indicating that XBP-1(S) increases the output of the CDP-choline pathway primarily via its effects on CCT. Finally, fibroblasts overexpressing CCT up-regulated PtdCho synthesis to a level similar to that in XBP-1(S)-transduced cells but exhibited only a small increase in rough ER and no induction of secretory pathway genes. The more robust XBP-1(S)-induced ER expansion was accompanied by induction of a wide array of genes encoding proteins that function either in the ER or at other steps in the secretory pathway. We propose that XBP-1(S) regulates ER abundance by coordinately increasing the supply of membrane phospholipids and ER proteins, the key ingredients for ER biogenesis.


Journal of Cell Science | 2009

ATF6α induces XBP1-independent expansion of the endoplasmic reticulum

Hemamalini Bommiasamy; Sung Hoon Back; Paolo Fagone; Kyungho Lee; Sasha Meshinchi; Elizabeth Vink; Rungtawan Sriburi; Matthew W. Frank; Suzanne Jackowski; Randal J. Kaufman; Joseph W. Brewer

A link exists between endoplasmic reticulum (ER) biogenesis and the unfolded protein response (UPR), a complex set of signaling mechanisms triggered by increased demands on the protein folding capacity of the ER. The UPR transcriptional activator X-box binding protein 1 (XBP1) regulates the expression of proteins that function throughout the secretory pathway and is necessary for development of an expansive ER network. We previously demonstrated that overexpression of XBP1(S), the active form of XBP1 generated by UPR-mediated splicing of Xbp1 mRNA, augments the activity of the cytidine diphosphocholine (CDP-choline) pathway for biosynthesis of phosphatidylcholine (PtdCho) and induces ER biogenesis. Another UPR transcriptional activator, activating transcription factor 6α (ATF6α), primarily regulates expression of ER resident proteins involved in the maturation and degradation of ER client proteins. Here, we demonstrate that enforced expression of a constitutively active form of ATF6α drives ER expansion and can do so in the absence of XBP1(S). Overexpression of active ATF6α induces PtdCho biosynthesis and modulates the CDP-choline pathway differently than does enforced expression of XBP1(S). These data indicate that ATF6α and XBP1(S) have the ability to regulate lipid biosynthesis and ER expansion by mechanisms that are at least partially distinct. These studies reveal further complexity in the potential relationships between UPR pathways, lipid production and ER biogenesis.


Nature Immunology | 2005

Building an antibody factory: a job for the unfolded protein response

Joseph W. Brewer; Linda M. Hendershot

Plasma cells are highly specialized, terminally differentiated secretory cells that produce tremendous quantities of a single product, the antibody molecule. In differentiating from a quiescent B cell, the plasma cell must undergo a dramatic architectural metamorphosis. This process entails augmenting the secretory organelles and the proteins that populate them, upregulating their energy and translation potential, and increasing the quality control system to do the job. This transformation is accomplished by an interplay between B lineage–specific transcriptional programs that control plasma cell differentiation and an unfolded protein response.


Journal of Biological Chemistry | 2011

The Unfolded Protein Response (UPR)-activated Transcription Factor X-box-binding Protein 1 (XBP1) Induces MicroRNA-346 Expression That Targets the Human Antigen Peptide Transporter 1 (TAP1) mRNA and Governs Immune Regulatory Genes

Rafal Bartoszewski; Joseph W. Brewer; Andras Rab; David K. Crossman; Sylwia Bartoszewska; Niren Kapoor; Catherine M. Fuller; James F. Collawn; Zsuzsa Bebok

Background: The adaptive unfolded protein response (UPR) promotes endoplasmic reticulum (ER) expansion and reduces ER load. Results: UPR-activated XBP1 induces miR-346 expression that targets TAP1. Conclusion: We identify a novel function for XBP1 and an miRNA-mediated pathway for ER load reduction through TAP1. Significance: Novel interventions for protein folding disorders will require an understanding of how microRNAs regulate gene expression during ER stress. To identify endoplasmic reticulum (ER) stress-induced microRNAs (miRNA) that govern ER protein influx during the adaptive phase of unfolded protein response, we performed miRNA microarray profiling and analysis in human airway epithelial cells following ER stress induction using proteasome inhibition or tunicamycin treatment. We identified miR-346 as the most significantly induced miRNA by both classic stressors. miR-346 is encoded within an intron of the glutamate receptor ionotropic delta-1 gene (GRID1), but its ER stress-associated expression is independent of GRID1. We demonstrated that the spliced X-box-binding protein-1 (sXBP1) is necessary and sufficient for ER stress-associated miR-346 induction, revealing a novel role for this unfolded protein response-activated transcription factor. In mRNA profiling arrays, we identified 21 mRNAs that were reduced by both ER stress and miR-346. The target genes of miR-346 regulate immune responses and include the major histocompatibility complex (MHC) class I gene products, interferon-induced genes, and the ER antigen peptide transporter 1 (TAP1). Although most of the repressed mRNAs appear to be indirect targets because they lack specific seeding sites for miR-346, we demonstrate that the human TAP1 mRNA is a direct target of miR-346. The human TAP1 mRNA 3′-UTR contains a 6-mer canonical seeding site for miR-346. Importantly, the ER stress-associated reduction in human TAP1 mRNA and protein levels could be reversed with an miR-346 antagomir. Because TAP function is necessary for proper MHC class I-associated antigen presentation, our results provide a novel mechanistic explanation for reduced MHC class I-associated antigen presentation that was observed during ER stress.


Journal of Biological Chemistry | 2007

Phospholipid Biosynthesis Program Underlying Membrane Expansion during B-lymphocyte Differentiation

Paolo Fagone; Rungtawan Sriburi; Cheryl Ward-Chapman; Matthew W. Frank; Jina Wang; Chris Gunter; Joseph W. Brewer; Suzanne Jackowski

Stimulated B-lymphocytes differentiate into plasma cells committed to antibody production. Expansion of the endoplasmic reticulum and Golgi compartments is a prerequisite for high rate synthesis, assembly, and secretion of immunoglobulins. The bacterial cell wall component lipopolysaccharide (LPS) stimulates murine B-cells to proliferate and differentiate into antibody-secreting cells that morphologically resemble plasma cells. LPS activation of CH12 B-cells augmented phospholipid production and initiated a genetic program, including elevated expression of the genes for the synthesis, elongation, and desaturation of fatty acids that supply the phospholipid acyl moieties. Likewise, many of the genes in phospholipid biosynthesis were up-regulated, most notably those encoding Lipin1 and choline phosphotransferase. In contrast, CTP:phosphocholine cytidylyltransferase α (CCTα) protein, a key control point in phosphatidylcholine biosynthesis, increased because of stabilization of protein turnover rather than transcriptional activation. Furthermore, an elevation in cellular diacylglycerol and fatty acid correlated with enhanced allosteric activation of CCTα by the membrane lipids. This work defines a genetic and biochemical program for membrane phospholipid biogenesis that correlates with an increase in the phospholipid components of the endoplasmic reticulum and Golgi compartments in LPS-stimulated B-cells.


Journal of Cell Biology | 2012

MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response

Andrew E. Byrd; Ileana V. Aragon; Joseph W. Brewer

The PERK pathway influences the scale of XBP1-mediated gene expression and cell fate in response to ER stress via miR-30c-2*.


Journal of Virology | 2008

Coronavirus Infection Modulates the Unfolded Protein Response and Mediates Sustained Translational Repression

John Bechill; Zhongbin Chen; Joseph W. Brewer; Susan C. Baker

ABSTRACT During coronavirus replication, viral proteins induce the formation of endoplasmic reticulum (ER)-derived double-membrane vesicles for RNA synthesis, and viral structural proteins assemble virions at the ER-Golgi intermediate compartment. We hypothesized that the association and intense utilization of the ER during viral replication would induce the cellular unfolded protein response (UPR), a signal transduction cascade that acts to modulate translation, membrane biosynthesis, and the levels of ER chaperones. Here, we report that infection by the murine coronavirus mouse hepatitis virus (MHV) triggers the proximal UPR transducers, as revealed by monitoring the IRE1-mediated splicing of XBP-1 mRNA and the cleavage of ATF6α. However, we detected minimal downstream induction of UPR target genes, including ERdj4, ER degradation-enhancing α-mannosidase-like protein, and p58IPK, or expression of UPR reporter constructs. Translation initiation factor eIF2α is highly phosphorylated during MHV infection, and translation of cellular mRNAs is attenuated. Furthermore, we found that the critical homeostasis regulator GADD34, which recruits protein phosphatase 1 to dephosphorylate eIF2α during the recovery phase of the UPR, is not expressed during MHV infection. These results suggest that MHV modifies the UPR by impeding the induction of UPR-responsive genes, thereby favoring a sustained shutdown of the synthesis of host cell proteins while the translation of viral proteins escalates. The role of this modified response and its potential relevance to viral mechanisms for the evasion of innate defense signaling pathways during coronavirus replication are discussed.


Journal of Immunology | 2006

Evidence that marginal zone B cells possess an enhanced secretory apparatus and exhibit superior secretory activity.

Kathryn E. Gunn; Joseph W. Brewer

Marginal zone B (MZB) cells are the first splenic B cells to initiate Ab secretion against polysaccharide-encapsulated Ags in vivo. This swift MZB cell response can be reproduced in vitro as LPS treatment induces Ab secretion in as little as 12 h. Conversely, in vitro LPS treatment of splenic follicular B (FOB) cells results in Ab secretion after 2–3 days. The basis for these distinct response kinetics is not understood. We performed ex vivo analysis of resting and LPS-stimulated murine MZB and FOB cells and found that MZB cells express higher levels of the LPS TLR complex RP105/MD-1 and respond to much lower concentrations of LPS than do FOB cells. Furthermore, increasing doses of LPS do not accelerate the kinetics by which FOB cells transition into Ab secretion. Ultrastructural analysis of resting cells demonstrated that rough endoplasmic reticulum is more abundant in MZB cells than in FOB cells. Additionally, RT-PCR and immunoblot analyses revealed that numerous endoplasmic reticulum resident chaperones and folding enzymes are expressed at greater levels in resting MZB cells than in resting FOB cells. Although both LPS-stimulated MZB and FOB cells increase expression of these factors, MZB cells exhibit a more rapid increase that correlates with accelerated kinetics of Ab secretion and higher per cell output of secreted IgM. These data indicate that MZB cells are equipped for exquisite sensitivity to bacterial components like LPS and poised for rapid, robust Ab production, making MZB cells ideally suited as frontline defenders in humoral immunity.


Molecular Immunology | 2012

The specialized unfolded protein response of B lymphocytes: ATF6α-independent development of antibody-secreting B cells

Ileana V. Aragon; Robert Barrington; Suzanne Jackowski; Kazutoshi Mori; Joseph W. Brewer

B lymphocytes, like all mammalian cells, are equipped with the unfolded protein response (UPR), a complex signaling system allowing for both pro- and mal-adaptive responses to increased demands on the endoplasmic reticulum (ER). The UPR is comprised of three signaling pathways initiated by the ER transmembrane stress sensors, IRE1α/β, PERK and ATF6α/β. Activation of IRE1 yields XBP1(S), a transcription factor that directs expansion of the ER and enhances protein biosynthetic and secretory machinery. XBP1(S) is essential for the differentiation of B lymphocytes into antibody-secreting cells. In contrast, the PERK pathway, a regulator of translation and transcription, is dispensable for the generation of antibody-secreting cells. Functioning as a transcription factor, ATF6α can augment ER quality control processes and drive ER expansion, but the potential role of this UPR pathway in activated B cells has not been investigated. Here, we report studies of ATF6α-deficient B cells demonstrating that ATF6α is not required for the development of antibody-secreting cells. Thus, when B cells are stimulated to secrete antibody, a specialized UPR relies exclusively on the IRE1-XBP1 pathway to remodel the ER and expand cellular secretory capacity.

Collaboration


Dive into the Joseph W. Brewer's collaboration.

Top Co-Authors

Avatar

Suzanne Jackowski

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Fagone

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Byrd

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Kathryn E. Gunn

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Frank

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andras Rab

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Catherine M. Fuller

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge