Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph W. Duris is active.

Publication


Featured researches published by Joseph W. Duris.


Applied and Environmental Microbiology | 2007

The Microbial Community Structure in Petroleum-Contaminated Sediments Corresponds to Geophysical Signatures

Jonathan P. Allen; Estella A. Atekwana; Eliot A. Atekwana; Joseph W. Duris; D. Dale Werkema; Silvia Rossbach

ABSTRACT The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueous-phase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes.


Journal of Environmental Quality | 2009

Gene and antigen markers of shiga-toxin producing E. coli from Michigan and Indiana river water: occurrence and relation to recreational water quality criteria.

Joseph W. Duris; Sheridan K. Haack; Lisa R. Fogarty

The relation of bacterial pathogen occurrence to fecal indicator bacteria (FIB) concentrations used for recreational water quality criteria (RWQC) is poorly understood. This study determined the occurrence of Shiga-toxin producing Escherichia coli (STEC) markers and their relation to FIB concentrations in Michigan and Indiana river water. Using 67 fecal coliform (FC) bacteria cultures from 41 river sites in multiple watersheds, we evaluated the occurrence of five STEC markers: the Escherichia coli (EC) O157 antigen and gene, and the STEC virulence genes eaeA, stx1, and stx2. Simple isolations from selected FC cultures yielded viable EC O157. By both antigen and gene assays, EC O157 was detected in a greater proportion of samples exceeding rather than meeting FC RWQC (P < 0.05), but was unrelated to EC and enterococci RWQC. The occurrence of all other STEC markers was unrelated to any FIB RWQC. The eaeA, stx2, and stx1 genes were found in 93.3, 13.3, and in 46.7% of samples meeting FC RWQC and in 91.7, 0.0, and 37.5% of samples meeting the EC RWQC. Although not statistically significant, the percentage of samples positive for each STEC marker except stx1 was lower in samples that met, as opposed to exceeded, FIB RWQC. Viable STEC were common members of the FC communities in river water throughout southern Michigan and northern Indiana, regardless of FIB RWQC. Our study indicates that further information on the occurrence of pathogens in recreational waters, and research on alternative indicators of their occurrence, may help inform water-resource management and public health decision-making.


Journal of Environmental Quality | 2009

Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

Sheridan K. Haack; Joseph W. Duris; Lisa R. Fogarty; Dana W. Kolpin; Michael J. Focazio; Edward T. Furlong; Michael T. Meyer

The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL(-1), human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions.


Applied and Environmental Microbiology | 2009

Bacterial and Archaeal Phylogenetic Diversity of a Cold Sulfur-Rich Spring on the Shoreline of Lake Erie, Michigan

Anita Chaudhary; Sheridan K. Haack; Joseph W. Duris; Terence L. Marsh

ABSTRACT Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H2, 5.4 nM; CH4, 2.70 μM) with concentrations of S2− (0.03 mM), SO42− (14.8 mM), Ca2+ (15.7 mM), and HCO3− (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments.


Applied and Environmental Microbiology | 2013

Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection.

Donna S. Francy; Erin A. Stelzer; Joseph W. Duris; Amie M.G. Brady; John H. Harrison; Heather E. Johnson; Michael W. Ware

ABSTRACT Predictive models, based on environmental and water quality variables, have been used to improve the timeliness and accuracy of recreational water quality assessments, but their effectiveness has not been studied in inland waters. Sampling at eight inland recreational lakes in Ohio was done in order to investigate using predictive models for Escherichia coli and to understand the links between E. coli concentrations, predictive variables, and pathogens. Based upon results from 21 beach sites, models were developed for 13 sites, and the most predictive variables were rainfall, wind direction and speed, turbidity, and water temperature. Models were not developed at sites where the E. coli standard was seldom exceeded. Models were validated at nine sites during an independent year. At three sites, the model resulted in increased correct responses, sensitivities, and specificities compared to use of the previous days E. coli concentration (the current method). Drought conditions during the validation year precluded being able to adequately assess model performance at most of the other sites. Cryptosporidium, adenovirus, eaeA (E. coli), ipaH (Shigella), and spvC (Salmonella) were found in at least 20% of samples collected for pathogens at five sites. The presence or absence of the three bacterial genes was related to some of the model variables but was not consistently related to E. coli concentrations. Predictive models were not effective at all inland lake sites; however, their use at two lakes with high swimmer densities will provide better estimates of public health risk than current methods and will be a valuable resource for beach managers and the public.


Applied and Environmental Microbiology | 2015

Genes Indicative of Zoonotic and Swine Pathogens Are Persistent in Stream Water and Sediment following a Swine Manure Spill

Sheridan K. Haack; Joseph W. Duris; Dana W. Kolpin; Lisa R. Fogarty; Heather E. Johnson; Kristen E. Gibson; Michael J. Focazio; Kellogg J. Schwab; Laura E. Hubbard; William T. Foreman

ABSTRACT Manure spills into streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for the following: fecal indicator bacteria (FIB), the fecal indicator chemicals cholesterol and coprostanol, 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence PCR for viable cells, one swine-specific Escherichia coli toxin gene (STII gene) by quantitative PCR (qPCR), and nine human and animal viruses by qPCR or reverse transcription-qPCR. Twelve days postspill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1 to 2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli were detected in water or sediment. STII gene levels increased from undetectable before or above the spill to 105 copies/100 ml of water 12 days postspill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells postspill. Eighteen days postspill, porcine adenovirus and teschovirus were detected 5.6 km downstream. FIB concentrations (per gram [wet weight]) in sediment were greater than in water, and sediment was a continuous reservoir of genes and chemicals postspill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days postspill) following manure application, although the swine-associated STII and stx 2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes and the potential for human and veterinary health consequences.


Water Research | 2013

Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

Joseph W. Duris; Andrew G. Reif; Donna A. Krouse; Natasha M. Isaacs

The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfb(O157)) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but not Cryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfb(O157), STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2, stx1, and rfb(O157) genes, but no genes were related exclusively to an individual MST marker. The human source pharmaceuticals (HSPs) acetaminophen and caffeine were correlated with Giardia, and the presence of HSPs proved to be more useful than MST markers in distinguishing the occurrence of Giardia. The HSPs caffeine and carbamazepine were correlated with the sum total of pathogen genes detected in a sample, demonstrating the value of using HSPs as an indicator of fecally derived pathogens. Sites influenced by urban land use with less forest were more likely to have greater FIB and Giardia densities and sum of the array of pathogen genes. Sites dominated by shallow carbonate bedrock in the upstream catchment were likely to have greater FIB densities and higher sum totals of pathogen genes but no correlation with Giardia detection. Our study provides a range of specific environmental, chemical, geologic, and land-use variables related to occurrence and distribution of FIB and selected bacterial and protozoan pathogens in Pennsylvania streams. The information presented could be useful for resource managers in understanding bacterial and protozoan pathogen occurrence and their relation to fecal indicator bacteria in similar settings.


Science of The Total Environment | 2016

Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture.

Sheridan K. Haack; Joseph W. Duris; Dana W. Kolpin; Michael J. Focazio; Michael T. Meyer; Heather E. Johnson; Ryan J. Oster; William T. Foreman

Animal waste, stream water, and streambed sediment from 19 small (<32km(2)) watersheds in 12U.S. states having either no major animal agriculture (control, n=4), or predominantly beef (n=4), dairy (n=3), swine (n=5), or poultry (n=3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions. Pathogen gene profiles may offer the potential to address both source of, and risks associated with, fecal pollution.


Science of The Total Environment | 2016

Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams.

Carrie E. Givens; Dana W. Kolpin; Mark A. Borchardt; Joseph W. Duris; Thomas B. Moorman; Susan K. Spencer

Abstract Manure application is a source of pathogens to the environment. Through overland runoff and tile drainage, zoonotic pathogens can contaminate surface water and streambed sediment and could affect both wildlife and human health. This study examined the environmental occurrence of gene markers for livestock-related bacterial, protozoan, and viral pathogens and antibiotic resistance in surface waters within the South Fork Iowa River basin before and after periods of swine manure application on agricultural land. Increased concentrations of indicator bacteria after manure application exceeding Iowas state bacteria water quality standards suggest that swine manure contributes to diminished water quality and may pose a risk to human health. Additionally, the occurrence of HEV and numerous bacterial pathogen genes for Escherichia coli, Enterococcus spp., Salmonella sp., and Staphylococcus aureus in both manure samples and in corresponding surface water following periods of manure application suggests a potential role for swine in the spreading of zoonotic pathogens to the surrounding environment. During this study, several zoonotic pathogens were detected including Shiga-toxin producing E. coli, Campylobacter jejuni, pathogenic enterococci, and S. aureus; all of which can pose mild to serious health risks to swine, humans, and other wildlife. This research provides the foundational understanding required for future assessment of the risk to environmental health from livestock-related zoonotic pathogen exposures in this region. This information could also be important for maintaining swine herd biosecurity and protecting the health of wildlife near swine facilities.


Science of The Total Environment | 2016

Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

Paul M. Bradley; Larry B. Barber; Jimmy M. Clark; Joseph W. Duris; William T. Foreman; Edward T. Furlong; Carrie E. Givens; Laura E. Hubbard; Kasey J. Hutchinson; Celeste A. Journey; Steffanie H. Keefe; Dana W. Kolpin

Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

Collaboration


Dive into the Joseph W. Duris's collaboration.

Top Co-Authors

Avatar

Sheridan K. Haack

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Dana W. Kolpin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Lisa R. Fogarty

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Heather E. Johnson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Laura E. Hubbard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William T. Foreman

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Edward T. Furlong

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Larry B. Barber

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael J. Focazio

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Paul M. Bradley

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge