Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph W. Gordon is active.

Publication


Featured researches published by Joseph W. Gordon.


Circulation Research | 2011

Multiple Facets of NF-κB in the Heart: To Be or Not to NF-κB

Joseph W. Gordon; James Shaw; Lorrie A. Kirshenbaum

The progression from cardiac injury to symptomatic heart failure has been intensely studied over the last decade, and is largely attributable to a loss of functional cardiac myocytes through necrosis, intrinsic and extrinsic apoptosis pathways and autophagy. Therefore, the molecular regulation of these cellular programs has been rigorously investigated in the hopes of identifying a potential cell target that could promote cell survival and/or inhibit cell death to avert, or at least prolong, the degeneration toward symptomatic heart failure. The nuclear factor (NF)-κB super family of transcription factors has been implicated in the regulation of immune cell maturation, cell survival, and inflammation in many cell types, including cardiac myocytes. Recent studies have shown that NF-κB is cardioprotective during acute hypoxia and reperfusion injury. However, prolonged activation of NF-κB appears to be detrimental and promotes heart failure by eliciting signals that trigger chronic inflammation through enhanced elaboration of cytokines including tumor necrosis factor α, interleukin-1, and interleukin-6, leading to endoplasmic reticulum stress responses and cell death. The underlying mechanisms that account for the multifaceted and differential outcomes of NF-κB on cardiac cell fate are presently unknown. Herein, we posit a novel paradigm in which the timing, duration of activation, and cellular context may explain mechanistically the differential outcomes of NF-κB signaling in the heart that may be essential for future development of novel therapeutic interventions designed to target NF-κB responses and heart failure following myocardial injury.


Circulation Research | 2011

A Novel Hypoxia-Inducible Spliced Variant of Mitochondrial Death Gene Bnip3 Promotes Survival of Ventricular Myocytes

Hongying Gang; Yan Hai; Rimpy Dhingra; Joseph W. Gordon; Yaron Aviv; Hongzhao Li; Floribeth Aguilar; Aaron J. Marshall; Etienne Leygue; Lorrie A. Kirshenbaum

Rationale: Alternative splicing provides a versatile mechanism by which cells generate proteins with different or even antagonistic properties. Previously, we established hypoxia-inducible death factor Bnip3 as a critical component of the intrinsic death pathway. Objective: To investigate alternative splicing of Bnip3 pre-mRNA in postnatal ventricular myocytes during hypoxia. Methods and Results: We identify a novel previously unrecognized spliced variant of Bnip3 (Bnip3&Dgr;ex3) generated by alternative splicing of exon3 exclusively in cardiac myocytes subjected to hypoxia. Sequencing of Bnip3&Dgr;ex3 revealed a frame shift mutation that terminated transcription up-stream of exon5 and exon6 ablating translation of the BH3-like domain and critical carboxyl-terminal transmembrane domain crucial for mitochondrial localization and cell death. Notably, although the 26-kDa Bnip3 protein (Bnip3FL) encoded by full-length mRNA was localized to mitochondria and provoked cell death, the 8.2-kDa Bnip3&Dgr;ex3 protein encoded by the truncated spliced mRNA was defective for mitochondrial targeting but interacted with Bnip3FL resulting in less association of Bnip3FL with mitochondria and diminished apoptotic and necrotic cell death. Forced expression of Bnip3FL in cardiac myocytes or Bnip3−/− mouse embryonic fibroblasts triggered widespread cell death that was inhibited by coexpression of Bnip3&Dgr;ex3. Conversely, RNA interference targeted against sequences encompassing the unique exon2-exon4 junction of the Bnip3&Dgr;ex3 sensitized cardiac myocytes to mitochondrial perturbations and cell death induced by Bnip3FL. Conclusions: Given the otherwise lethal consequences of deregulated Bnip3FL expression in postmitotic cells, our findings reveal a novel intrinsic defense mechanism that opposes the mitochondrial defects and cell death of ventricular myocytes that is obligatorily linked and mutually dependent on alternative splicing of Bnip3FL during hypoxia or ischemic stress.


Cell Death and Disease | 2015

A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells.

Wajihah Mughal; L Nguyen; S Pustylnik; S C da Silva Rosa; S Piotrowski; Donald Chapman; Min Du; Nezeka S. Alli; Jörg Grigull; A J Halayko; Michel Aliani; M K Topham; R M Epand; G M Hatch; T J Pereira; S Kereliuk; John C. McDermott; C Rampitsch; V W Dolinsky; Joseph W. Gordon

Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology.


Biochemistry and Cell Biology | 2015

Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth.

Joseph W. Gordon; Vernon W. Dolinsky; Wajihah Mughal; Grant R.J. Gordon; Jonathan McGavock

The prevalence of type 2 diabetes (T2D) has increased dramatically over the past two decades, not only among adults but also among adolescents. T2D is a systemic disorder affecting every organ system and is especially damaging to the cardiovascular system, predisposing individuals to severe cardiac and vascular complications. The precise mechanisms that cause T2D are an area of active research. Most current theories suggest that the process begins with peripheral insulin resistance that precedes failure of the pancreatic β-cells to secrete sufficient insulin to maintain normoglycemia. A growing body of literature has highlighted multiple aspects of mitochondrial function, including oxidative phosphorylation, lipid homeostasis, and mitochondrial quality control in the regulation of peripheral insulin sensitivity. Whether the cellular mechanisms of insulin resistance in adults are comparable to that in adolescents remains unclear. This review will summarize both clinical and basic studies that shed light on how alterations in skeletal muscle mitochondrial function contribute to whole body insulin resistance and will discuss the evidence supporting high-intensity exercise training as a therapy to circumvent skeletal muscle mitochondrial dysfunction to restore insulin sensitivity in both adults and adolescents.


Journal of Cardiovascular Pharmacology | 2012

Autophagy in the heart: too much of a good thing?

Erika Y. Wang; Agnieszka K. Biala; Joseph W. Gordon; Lorrie A. Kirshenbaum

Abstract: Autophagy constitutes a catabolic process involving lysosomal degradation of damaged and redundant cytosolic components into biomolecules, via an elaborate lysosomal pathway. Autophagy is a highly regulated and evolutionary conserved process crucial for normal tissue homeostasis and cell life. Certain members of the Bcl-2 gene family, including the BH3 only protein Bnip3 regulate autophagy during cardiac stress during ischemic or hypoxic injury as means of discarding damaged mitochondria and organelles to avert cell death. Defects in the regulation of autophagy have been associated with a number of human pathologies including cancer, neurodegenerative diseases, and heart failure. Here, we discuss the molecular regulation of autophagy in the heart and cellular demise from “too much a good thing.”


Scientific Reports | 2017

Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells

Javad Alizadeh; Amir A. Zeki; Nima Mirzaei; Sandipan Tewary; Adel Rezaei Moghadam; Aleksandra Glogowska; Pandian Nagakannan; Eftekhar Eftekharpour; Emilia Wiechec; Joseph W. Gordon; Fred Y. Xu; Jared T. Field; Ken Y. Yoneda; Nicholas J. Kenyon; Mohammad Hashemi; Grant M. Hatch; Sabine Hombach-Klonisch; Thomas Klonisch; Saeid Ghavami

The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.


Molecular and Cellular Biochemistry | 2018

Regulation of cardiac myocyte cell death and differentiation by myocardin

Joseph W. Gordon

Myocardin is a cardiac- and smooth muscle-enriched transcriptional co-activator that was originally described as an interacting partner of the serum response factor. Shortly after myocardin’s discovery, a wealth of published literature described the role of myocardin as a regulator of smooth muscle differentiation and phenotype modulation, while gene-targeting studies confirmed the essential role of myocardin in vascular development. More recently, myocardin has been implicated as an important regulator of cardiac myocyte differentiation in studies demonstrating direct programming of fibroblasts towards the cardiac lineage. This function of myocardin has been attributed to its physical interaction with cardiac-enriched transcription factors such as MEF2C, GATA4, and TBX5. Moreover, conditional knockout models have revealed a critical role for myocardin during cardiac chamber maturation, and a surprising function for myocardin in the regulation of cardiomyocyte proliferation, cell death, and possibly mitochondrial function. This review summarizes the literature surrounding the cardiac-specific roles of myocardin during development and post-natal cardiac remodeling. In addition, we take a bioinformatics and computational approach to discuss known and predicted interactions and biological functions of myocardin, which suggests areas for future research.


Cell Death & Differentiation | 2018

Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition

Wajihah Mughal; Matthew Martens; Jared T. Field; Donald Chapman; Jianhe Huang; Sunil G. Rattan; Yan Hai; Kyle G. Cheung; Stephanie Kereliuk; Adrian R. West; Laura K. Cole; Grant M. Hatch; William Diehl-Jones; Richard Keijzer; Vernon W. Dolinsky; Ian M. C. Dixon; Michael S. Parmacek; Joseph W. Gordon

Myocardin is a transcriptional co-activator required for cardiovascular development, but also promotes cardiomyocyte survival through an unclear molecular mechanism. Mitochondrial permeability transition is implicated in necrosis, while pore closure is required for mitochondrial maturation during cardiac development. We show that loss of myocardin function leads to subendocardial necrosis at E9.5, concurrent with elevated expression of the death gene Nix. Mechanistically, we demonstrate that myocardin knockdown reduces microRNA-133a levels to allow Nix accumulation, leading to mitochondrial permeability transition, reduced mitochondrial respiration, and necrosis. Myocardin knockdown elicits calcium release from the endo/sarcoplasmic reticulum with mitochondrial calcium accumulation, while restoration of microRNA-133a function, or knockdown of Nix rescues calcium perturbations. We observed reduced myocardin and elevated Nix expression within the infarct border-zone following coronary ligation. These findings identify a myocardin-regulated pathway that maintains calcium homeostasis and mitochondrial function during development, and is attenuated during ischemic heart disease. Given the diverse role of Nix and microRNA-133a, these findings may have broader implications to metabolic disease and cancer.


Journal of Pediatric Gastroenterology and Nutrition | 2015

Human Milk Fortification Increases Bnip3 Expression Associated With Intestinal Cell Death In Vitro.

William Diehl-Jones; Alyssa Archibald; Joseph W. Gordon; Wajihah Mughal; Zakir Hossain; James K. Friel

Objectives: The aim of the present study was to determine the in vitro effect(s) of a bovine-based human breast milk fortifier (HMF) on human intestinal cells. HMF increases the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein (Bnip3) and cell death; the prostaglandin analogue misoprostol will rescue this effect. Methods: Cultured intestinal cells were exposed to in vitro–digested human breast milk (BM) ± HMF. Intracellular oxidation, cell damage/cell death, and BNIP3 expression were measured after exposure. Results: In vitro–digested BM + HMF significantly increased intracellular oxidation, cell damage, and cell death in enterocyte cell cultures compared with either saline or BM controls, an effect that was rescued by the prostaglandin analogue, misoprostol. Bnip3 transcript and Bnip3 protein levels were significantly increased in vitro after treatment with BM + HMF. We also provide evidence that transfection of enterocytes with Bnip3 increases cell death, an effect that is rescued by a nonfunctional Bnip3 splice variant. Conclusions: Our data support the hypothesis that HMF increases intestinal Bnip3 in vitro, and that the gene product triggers cell death. We suggest that misoprostol is a promising therapy, which may reduce intestinal cell death.


Cell death discovery | 2019

Autophagy modulates temozolomide-induced cell death in alveolar Rhabdomyosarcoma cells

Adel Rezaei Moghadam; Simone da Silva Rosa; Ehsan Samiei; Javad Alizadeh; Jared T. Field; Philip Kawalec; James Thliveris; Mohsen Akbari; Saeid Ghavami; Joseph W. Gordon

Rhabdomyosarcoma (RMS) is a muscle-derived tumor. In both pre-clinical and clinical studies Temozolomide (TMZ) has been recently tested against RMS; however, the precise mechanism of action of TMZ in RMS remains unclear. Here we demonstrate that TMZ decreases the cell viability of the RH30 RMS and C2C12 cell line, where cells display evidence of mitochondrial outer membrane permeability. Interestingly, the C2C12 mouse myoblast line was relatively more resistant to TMZ-induced apoptosis. Moreover, we observed that TMZ activated biochemical and morphological markers of autophagy in both cell lines. Autophagy inhibition in both RH30 and C2C12 cells significantly increased TMZ-induced cell death. In RH30 cells, TMZ increased Mcl-1 and Bax protein expression compared to corresponding time match controls while in C2C12 Mcl-1, Bcl-2, Bcl-XL, and Bax protein expression were not changed. Baf-A1 co-treatment with TMZ significantly decrease Mcl-1 expression compared to TMZ while increase Bax expression in C2C12 cells (Bcl2 and Bcl-XL do not significantly change in Baf-A1/TMZ co-treatment). Using a three-dimensional (3D) C2C12 and RH30 culture model we demonstrated that TMZ is significantly more toxic in RH30 cells (live/dead assay). Additionally, we have observed in our 3D culture model that TMZ induced both apoptosis (cleavage of PARP) and autophagy (LC3-puncta and localization of LC3/p62). Therefore, our data demonstrate that TMZ induces simultaneous autophagy and apoptosis in both RH30 and C2C12 cells in 2D and 3D culture model, where RH30 cells are more sensitive to TMZ-induced death. Furthermore, autophagy serves to protect RH30 cells from TMZ-induced death.

Collaboration


Dive into the Joseph W. Gordon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Hai

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge