Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Willis is active.

Publication


Featured researches published by Joseph Willis.


Science | 2007

The genomic landscapes of human breast and colorectal cancers.

Laura D. Wood; D. Williams Parsons; Siân Jones; Jimmy Lin; Tobias Sjöblom; Rebecca J. Leary; Dong Shen; Simina M. Boca; Thomas D. Barber; Janine Ptak; Natalie Silliman; Steve Szabo; Zoltan Dezso; Vadim Ustyanksky; Tatiana Nikolskaya; Yuri Nikolsky; Rachel Karchin; Paul Wilson; Joshua S. Kaminker; Zemin Zhang; Randal Croshaw; Joseph Willis; Dawn Dawson; Michail Shipitsin; James K V Willson; Saraswati Sukumar; Kornelia Polyak; Ben Ho Park; Charit L. Pethiyagoda; P.V. Krishna Pant

Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Comparative lesion sequencing provides insights into tumor evolution

Siân Jones; Wei Dong Chen; Giovanni Parmigiani; Frank Diehl; Niko Beerenwinkel; Tibor Antal; Arne Traulsen; Martin A. Nowak; Christopher Siegel; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; Joseph Willis; Sanford D. Markowitz

We show that the times separating the birth of benign, invasive, and metastatic tumor cells can be determined by analysis of the mutations they have in common. When combined with prior clinical observations, these analyses suggest the following general conclusions about colorectal tumorigenesis: (i) It takes ≈17 years for a large benign tumor to evolve into an advanced cancer but <2 years for cells within that cancer to acquire the ability to metastasize; (ii) it requires few, if any, selective events to transform a highly invasive cancer cell into one with the capacity to metastasize; (iii) the process of cell culture ex vivo does not introduce new clonal mutations into colorectal tumor cell populations; and (iv) the rates at which point mutations develop in advanced cancers are similar to those of normal cells. These results have important implications for understanding human tumor pathogenesis, particularly those associated with metastasis.


Nature Genetics | 2000

Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer.

William M. Grady; Joseph Willis; Parry Guilford; Anita K. Dunbier; Tumi Toro; Henry T. Lynch; Georgia L. Wiesner; Kelly Ferguson; Charis Eng; Jae-Gahb Park; Seong-Jin Kim; Sanford D. Markowitz

Aberrant promoter methylation and the associated loss of gene expression is a common accompaniment of human cancers. Nonetheless, it has been challenging to demonstrate in any given tumour that methylation of a specific gene was causal and not consequent to malignant transformation. In this regard, our attention was drawn to the genesis of gastric cancers in individuals with hereditary diffuse gastric cancer (HDGC). These individuals harbour germline mutations in the gene encoding E-cadherin, CDH1 (refs 2–4), but their cancers have consistently demonstrated absence of loss of heterozygosity at the CDH1 locus. These findings suggested the hypothesis that CDH1 promoter methylation might function as the ‘second genetic hit’ in the genesis of these cancers.


Gastrointestinal Endoscopy | 2000

High-resolution endoscopic imaging of the GI tract using optical coherence tomography.

Michael V. Sivak; Kenji Kobayashi; Joseph A. Izatt; Andrew M. Rollins; R. Ung-runyawee; Amitabh Chak; Richard C.K. Wong; Gerard Isenberg; Joseph Willis

BACKGROUND Optical coherence tomography (OCT) has demonstrated the microscopic structure of the gastrointestinal (GI) tract mucosa and submucosa in vitro. We evaluated a prototype OCT system and assessed the feasibility of OCT in the human GI tract. METHODS The 2.4 mm diameter prototype OCT probe, inserted through an endoscope, provides a 360-degree radial scan. Images (6.7 frames/sec) are displayed on a television monitor. Tissue contact is not required. In patients undergoing elective endoscopy, OCT images were obtained of normal mucosa (confirmed by biopsy). RESULTS Seventy-two sites were imaged (38 patients): esophagus (21), stomach (12), duodenum (11), terminal ileum (4), colon (15), and rectum (9). Varying the distance between the probe and the mucosal surface produced images of the GI wall of varying depth. When held about 1 mm above the mucosal surface, the images consisted of mucosal structures such as colonic crypts, gastric pits, and duodenal villi. With the probe held against the wall, the OCT image comprised several layers interpreted as mucosa, muscularis mucosae, and submucosa. Structures including blood vessels were evident within the submucosa. A probe with a 0.5 mm working distance to the focal point provided the best images. Reducing the frame rate to 4.0 per second facilitated image interpretation. CONCLUSIONS OCT is feasible in the human GI tract and provides interpretable high-resolution images of mucosa and submucosa.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers

Rebecca J. Leary; Jimmy Lin; Jordan M. Cummins; Simina M. Boca; Laura D. Wood; D. Williams Parsons; Siân Jones; Tobias Sjöblom; Ben Ho Park; Ramon Parsons; Joseph Willis; Dawn Dawson; James K V Willson; Tatiana Nikolskaya; Yuri Nikolsky; Levy Kopelovich; Nick Papadopoulos; Len A. Pennacchio; Tian Li Wang; Sanford D. Markowitz; Giovanni Parmigiani; Kenneth W. Kinzler; Bert Vogelstein; Victor E. Velculescu

We have performed a genome-wide analysis of copy number changes in breast and colorectal tumors using approaches that can reliably detect homozygous deletions and amplifications. We found that the number of genes altered by major copy number changes, deletion of all copies or amplification to at least 12 copies per cell, averaged 17 per tumor. We have integrated these data with previous mutation analyses of the Reference Sequence genes in these same tumor types and have identified genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations included those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that could prove useful for cancer diagnosis and therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2003

SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers

Hui Li; Lois Myeroff; Dominic J. Smiraglia; Michael F. Romero; Theresa P. Pretlow; Lakshmi Kasturi; James Lutterbaugh; Ronald M. Rerko; Graham Casey; Jean-Pierre Issa; Joseph Willis; James K V Willson; Christoph Plass; Sanford D. Markowitz

We identify a gene, SLC5A8, and show it is a candidate tumor suppressor gene whose silencing by aberrant methylation is a common and early event in human colon neoplasia. Aberrant DNA methylation has been implicated as a component of an epigenetic mechanism that silences genes in human cancers. Using restriction landmark genome scanning, we performed a global search to identify genes that would be aberrantly methylated at high frequency in human colon cancer. From among 1,231 genomic NotI sites assayed, site 3D41 was identified as methylated in 11 of 12 colon cancers profiled. Site 3D41 mapped to exon 1 of SLC5A8, a transcript that we assembled. In normal colon mucosa we found that SLC5A8 exon 1 is unmethylated and SLC5A8 transcript is expressed. In contrast, SLC5A8 exon 1 proved to be aberrantly methylated in 59% of primary colon cancers and 52% of colon cancer cell lines. SLC5A8 exon 1 methylated cells were uniformly silenced for SLC5A8 expression, but reactivated expression on treatment with a demethylating drug, 5-azacytidine. Transfection of SLC5A8 suppressed colony growth in each of three SLC5A8-deficient cell lines, but showed no suppressive effect in any of three SLC5A8-proficient cell lines. SLC5A8 exon 1 methylation is an early event, detectable in colon adenomas, and in even earlier microscopic colonic aberrant crypt foci. Structural homology and functional testing demonstrated that SLC5A8 is a member of the family of sodium solute symporters, which are now added as a class of candidate colon cancer suppressor genes.


Human Mutation | 1999

E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer

Parry Guilford; Justin Hopkins; William M. Grady; Sanford D. Markowitz; Joseph Willis; Henry T. Lynch; Ashwani Rajput; Georgia L. Wiesner; Noralane M. Lindor; Lawrence J. Burgart; Tumi Toro; Don Lee; Jean Marc Limacher; David W. Shaw; Michael Findlay; Anthony E. Reeve

To extend earlier observations of germline E‐cadherin mutations in kindreds with an inherited susceptibility to diffuse gastric cancer, we searched for germline E‐cadherin mutations in five further families affected predominantly by diffuse gastric cancer and one family with a history of diffuse gastric cancer and early‐onset breast cancer. Heterozygous inactivating mutations were found in the E‐cadherin gene in each of these families. No mutation hotspots were identified. These results demonstrate that germline mutation of the E‐cadherin gene is a common cause of hereditary diffuse gastric cancer and suggest a role for these mutations in the incidence of breast cancer. Hum Mutat 14:249–255, 1999.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance

Dawang Zhou; Yongyou Zhang; Hongtan Wu; Evan Barry; Yi Yin; Earl Lawrence; Dawn Dawson; Joseph Willis; Sanford D. Markowitz; Fernando D. Camargo; Joseph Avruch

Ablation of the kinases Mst1 and Mst2, orthologs of the Drosophila antiproliferative kinase Hippo, from mouse intestinal epithelium caused marked expansion of an undifferentiated stem cell compartment and loss of secretory cells throughout the small and large intestine. Although median survival of mice lacking intestinal Mst1/Mst2 is 13 wk, adenomas of the distal colon are common by this age. Diminished phosphorylation, enhanced abundance, and nuclear localization of the transcriptional coactivator Yes-associated protein 1 (Yap1) is evident in Mst1/Mst2-deficient intestinal epithelium, as is strong activation of β-catenin and Notch signaling. Although biallelic deletion of Yap1 from intestinal epithelium has little effect on intestinal development, inactivation of a single Yap1 allele reduces Yap1 polypeptide abundance to nearly wild-type levels and, despite the continued Yap hypophosphorylation and preferential nuclear localization, normalizes epithelial structure. Thus, supraphysiologic Yap polypeptide levels are necessary to drive intestinal stem cell proliferation. Yap is overexpressed in 68 of 71 human colon cancers and in at least 30 of 36 colon cancer-derived cell lines. In colon-derived cell lines where Yap is overabundant, its depletion strongly reduces β-catenin and Notch signaling and inhibits proliferation and survival. These findings demonstrate that Mst1 and Mst2 actively suppress Yap1 abundance and action in normal intestinal epithelium, an antiproliferative function that frequently is overcome in colon cancer through Yap1 polypeptide overabundance. The dispensability of Yap1 in normal intestinal homeostasis and its potent proliferative and prosurvival actions when overexpressed in colon cancer make it an attractive therapeutic target.


Proceedings of the National Academy of Sciences of the United States of America | 2006

15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis

Seung-Jae Myung; Ronald M. Rerko; Min Yan; Petra Platzer; Kishore Guda; Angela Dotson; Earl Lawrence; Andrew J. Dannenberg; Alysia Kern Lovgren; Guangbin Luo; Theresa P. Pretlow; Robert A. Newman; Joseph Willis; Dawn Dawson; Sanford D. Markowitz

15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a prostaglandin-degrading enzyme that is highly expressed in normal colon mucosa but is ubiquitously lost in human colon cancers. Herein, we demonstrate that 15-PGDH is active in vivo as a highly potent suppressor of colon neoplasia development and acts in the colon as a required physiologic antagonist of the prostaglandin-synthesizing activity of the cyclooxygenase 2 (COX-2) oncogene. We first show that 15-PGDH gene knockout induces a marked 7.6-fold increase in colon tumors arising in the Min (multiple intestinal neoplasia) mouse model. Furthermore, 15-PGDH gene knockout abrogates the normal resistance of C57BL/6J mice to colon tumor induction by the carcinogen azoxymethane (AOM), conferring susceptibility to AOM-induced adenomas and carcinomas in situ. Susceptibility to AOM-induced tumorigenesis is mediated by a marked induction of dysplasia, proliferation, and cyclin D1 expression throughout microscopic aberrant crypt foci arising in 15-PGDH null colons and is concomitant with a doubling of prostaglandin E2 in 15-PGDH null colonic mucosa. A parallel role for 15-PGDH loss in promoting the earliest steps of colon neoplasia in humans is supported by our finding of a universal loss of 15-PGDH expression in microscopic colon adenomas recovered from patients with familial adenomatous polyposis, including adenomas as small as a single crypt. These models thus delineate the in vivo significance of 15-PGDH-mediated negative regulation of the COX-2 pathway and moreover reveal the particular importance of 15-PGDH in opposing the neoplastic progression of colonic aberrant crypt foci.


Science | 2012

Epigenomic Enhancer Profiling Defines a Signature of Colon Cancer

Batool Akhtar-Zaidi; Richard Cowper-Sal·lari; Olivia Corradin; Alina Saiakhova; Cynthia F. Bartels; Dheepa Balasubramanian; Lois Myeroff; James Lutterbaugh; Awad Jarrar; Matthew F. Kalady; Joseph Willis; Jason H. Moore; Paul J. Tesar; Thomas LaFramboise; Sanford D. Markowitz; Mathieu Lupien; Peter C. Scacheri

Colorectal Cancer Signature The mutations and genome aberrations that characterize cancer result in often dramatically altered gene and protein expression patterns. It is these altered expression patterns that directly and indirectly drive progression of the disease. In human primary colorectal cancer cells, Akhtar-Zaidi et al. (p. 736, published online 12 April) analyzed the pattern of epigenetically modified chromatin at “enhancer” sequences that are known to be critical in the control of gene expression. An epigenetic enhancer signature was defined that was specifically associated with colorectal cancer cells. Methylation tags at long-distance gene regulatory elements provide a signature specific to cancer cells. Cancer is characterized by gene expression aberrations. Studies have largely focused on coding sequences and promoters, even though distal regulatory elements play a central role in controlling transcription patterns. We used the histone mark H3K4me1 to analyze gain and loss of enhancer activity genome-wide in primary colon cancer lines relative to normal colon crypts. We identified thousands of variant enhancer loci (VELs) that comprise a signature that is robustly predictive of the in vivo colon cancer transcriptome. Furthermore, VELs are enriched in haplotype blocks containing colon cancer genetic risk variants, implicating these genomic regions in colon cancer pathogenesis. We propose that reproducible changes in the epigenome at enhancer elements drive a specific transcriptional program to promote colon carcinogenesis.

Collaboration


Dive into the Joseph Willis's collaboration.

Top Co-Authors

Avatar

Sanford D. Markowitz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Amitabh Chak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

William M. Grady

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jill S. Barnholtz-Sloan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kishore Guda

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Robert C. Elston

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Michael V. Sivak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

James Lutterbaugh

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Gerard Isenberg

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge