Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Y. Lo is active.

Publication


Featured researches published by Joseph Y. Lo.


Neural Networks | 2008

Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance.

Maciej A. Mazurowski; Piotr A. Habas; Jacek M. Zurada; Joseph Y. Lo; Jay A. Baker; Georgia D. Tourassi

This study investigates the effect of class imbalance in training data when developing neural network classifiers for computer-aided medical diagnosis. The investigation is performed in the presence of other characteristics that are typical among medical data, namely small training sample size, large number of features, and correlations between features. Two methods of neural network training are explored: classical backpropagation (BP) and particle swarm optimization (PSO) with clinically relevant training criteria. An experimental study is performed using simulated data and the conclusions are further validated on real clinical data for breast cancer diagnosis. The results show that classifier performance deteriorates with even modest class imbalance in the training data. Further, it is shown that BP is generally preferable over PSO for imbalanced training data especially with small data sample and large number of features. Finally, it is shown that there is no clear preference between oversampling and no compensation approach and some guidance is provided regarding a proper selection.


Medical Physics | 2006

Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms

Georgia D. Tourassi; Brian P. Harrawood; Swatee Singh; Joseph Y. Lo; Carey E. Floyd

The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrieval precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.


Medical Physics | 2011

Knowledge-based IMRT Treatment Planning for Prostate Cancer

Vorakarn Chanyavanich; S Das; William R. Lee; Joseph Y. Lo

PURPOSE To demonstrate the feasibility of using a knowledge base of prior treatment plans to generate new prostate intensity modulated radiation therapy (IMRT) plans. Each new case would be matched against others in the knowledge base. Once the best match is identified, that clinically approved plan is used to generate the new plan. METHODS A database of 100 prostate IMRT treatment plans was assembled into an information-theoretic system. An algorithm based on mutual information was implemented to identify similar patient cases by matching 2D beams eye view projections of contours. Ten randomly selected query cases were each matched with the most similar case from the database of prior clinically approved plans. Treatment parameters from the matched case were used to develop new treatment plans. A comparison of the differences in the dose-volume histograms between the new and the original treatment plans were analyzed. RESULTS On average, the new knowledge-based plan is capable of achieving very comparable planning target volume coverage as the original plan, to within 2% as evaluated for D98, D95, and D1. Similarly, the dose to the rectum and dose to the bladder are also comparable to the original plan. For the rectum, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are 1.8% +/- 8.5%, -2.5% +/- 13.9%, and -13.9% +/- 23.6%, respectively. For the bladder, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are -5.9% +/- 10.8%, -12.2% +/- 14.6%, and -24.9% +/- 21.2%, respectively. A negative percentage difference indicates that the new plan has greater dose sparing as compared to the original plan. CONCLUSIONS The authors demonstrate a knowledge-based approach of using prior clinically approved treatment plans to generate clinically acceptable treatment plans of high quality. This semiautomated approach has the potential to improve the efficiency of the treatment planning process while ensuring that high quality plans are developed.


Artificial Intelligence in Medicine | 2003

Self-organizing map for cluster analysis of a breast cancer database

Mia K. Markey; Joseph Y. Lo; Georgia D. Tourassi; Carey E. Floyd

The purpose of this study was to identify and characterize clusters in a heterogeneous breast cancer computer-aided diagnosis database. Identification of subgroups within the database could help elucidate clinical trends and facilitate future model building. A self-organizing map (SOM) was used to identify clusters in a large (2258 cases), heterogeneous computer-aided diagnosis database based on mammographic findings (BI-RADS) and patient age. The resulting clusters were then characterized by their prototypes determined using a constraint satisfaction neural network (CSNN). The clusters showed logical separation of clinical subtypes such as architectural distortions, masses, and calcifications. Moreover, the broad categories of masses and calcifications were stratified into several clusters (seven for masses and three for calcifications). The percent of the cases that were malignant was notably different among the clusters (ranging from 6 to 83%). A feed-forward back-propagation artificial neural network (BP-ANN) was used to identify likely benign lesions that may be candidates for follow up rather than biopsy. The performance of the BP-ANN varied considerably across the clusters identified by the SOM. In particular, a cluster (#6) of mass cases (6% malignant) was identified that accounted for 79% of the recommendations for follow up that would have been made by the BP-ANN. A classification rule based on the profile of cluster #6 performed comparably to the BP-ANN, providing approximately 25% specificity at 98% sensitivity. This performance was demonstrated to generalize to a large (2177) set of cases held-out for model validation.


Medical Physics | 2009

Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

Amarpreet S. Chawla; Joseph Y. Lo; Jay A. Baker; Ehsan Samei

Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular are of approximately 45 degrees--the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.


Medical Physics | 2000

Segmentation of suspicious clustered microcalcifications in mammograms

Marios A. Gavrielides; Joseph Y. Lo; Rene Vargas-Voracek; Carey E. Floyd

We have developed a multistage computer-aided diagnosis (CAD) scheme for the automated segmentation of suspicious microcalcification clusters in digital mammograms. The scheme consisted of three main processing steps. First, the breast region was segmented and its high-frequency content was enhanced using unsharp masking. In the second step, individual microcalcifications were segmented using local histogram analysis on overlapping subimages. For this step, eight histogram features were extracted for each subimage and were used as input to a fuzzy rule-based classifier that identified subimages containing microcalcifications and assigned the appropriate thresholds to segment any microcalcifications within them. The final step clustered the segmented microcalcifications and extracted the following features for each cluster: the number of microcalcifications, the average distance between microcalcifications, and the average number of times pixels in the cluster were segmented in the second step. Fuzzy logic rules incorporating the cluster features were designed to remove nonsuspicious clusters, defined as those with typically benign characteristics. A database of 98 images, with 48 images containing one or more microcalcification clusters, provided training and testing sets to optimize the parameters and evaluate the CAD scheme, respectively. The results showed a true positive rate of 93.2% and an average of 0.73 false positive clusters per image. A comparison of our results with other reported segmentation results on the same database showed comparable sensitivity and at the same time an improved false positive rate. The performance of the CAD scheme is encouraging for its use as an automatic tool for efficient and accurate diagnosis of breast cancer.


IEEE Transactions on Image Processing | 2010

Efficient Fourier-Wavelet Super-Resolution

M. Dirk Robinson; Cynthia A. Toth; Joseph Y. Lo; Sina Farsiu

Super-resolution (SR) is the process of combining multiple aliased low-quality images to produce a high-resolution high-quality image. Aside from registration and fusion of low-resolution images, a key process in SR is the restoration and denoising of the fused images. We present a novel extension of the combined Fourier-wavelet deconvolution and denoising algorithm ForWarD to the multiframe SR application. Our method first uses a fast Fourier-base multiframe image restoration to produce a sharp, yet noisy estimate of the high-resolution image. Our method then applies a space-variant nonlinear wavelet thresholding that addresses the nonstationarity inherent in resolution-enhanced fused images. We describe a computationally efficient method for implementing this space-variant processing that leverages the efficiency of the fast Fourier transform (FFT) to minimize complexity. Finally, we demonstrate the effectiveness of this algorithm for regular imagery as well as in digital mammography.


Medical Physics | 2008

Optimization of exposure parameters in full field digital mammography

Mark B. Williams; Priya Raghunathan; Mitali J. More; J. Anthony Seibert; Alexander L. C. Kwan; Joseph Y. Lo; Ehsan Samei; Nicole T. Ranger; Laurie L. Fajardo; Allen McGruder; Sandra M. McGruder; Andrew D. A. Maidment; Martin J. Yaffe; Aili K. Bloomquist; Gordon E. Mawdsley

Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fujis 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and on the receptor type. In most cases, the AECs of the FFDM systems successfully identified exposure parameters resulting in FOM values near the maximum ones, however, there were several examples where AEC performance could be improved.


Academic Radiology | 1999

Effect of patient histoy data on the prediction of breast cancer from mammographic findings with artificial neural networks

Joseph Y. Lo; Jay A. Baker; Phyllis J. Kornguth; Carey E. Floyd

Rationale and Objectives. The authors evaluated the contribution of medical history data to the prediction of breast cancer with artificial neural network (ANN) models based on mammographic findings. Materials and Methods. Three ANNs were developed: The first used 10 Breast Imaging Reporting and Data System (BI-RADS) variables; the second, the BI-RADS variables plus patient age; the third, the BI-RADS variables, patient age, and seven other history variables, for a total of 18 inputs. Performance of the ANNs and the original radiologists impression were evaluated with five metrics: receiver operating characteristic area index (Az); specificity at given sensitivities of 100%, 98%, and 95%; and positive predictive value. Results. All three ANNs consistently outperformed the radiologists impression over all five performance metrics. The patient-age variable was particularly valuable. Adding the age variable to the basic ANN model, which used only the BI-RADS findings, significantly improved Az (P = .028). In fact, replacing all history data with just the age variable resulted in virtually no changes for Az or specificity at 98% sensitivity (P = .324 and P = .410, respectively). Conclusion. Patient age was an important variable for the prediction of breast cancer from mammographic findings with the ANNs. For this data set, all history data could be replaced with age alone.


Medical Physics | 2005

Physical characterization of a prototype selenium-based full field digital mammography detector.

Robert S. Saunders; Ehsan Samei; Jonathan L. Jesneck; Joseph Y. Lo

The purpose of this study was to measure experimentally the physical performance of a prototype mammographic imager based on a direct detection, flat-panel array design employing an amorphous selenium converter with 70 microm pixels. The system was characterized for two different anode types, a molybdenum target with molybdenum filtration (Mo/Mo) and a tungsten target with rhodium filtration (W/Rh), at two different energies, 28 and 35 kVp, with approximately 2 mm added aluminum filtration. To measure the resolution, the presampled modulation transfer function (MTF) was measured using an edge method. The normalized noise power spectrum (NNPS) was measured by two-dimensional Fourier analysis of uniformly exposed mammograms. The detective quantum efficiencies (DQEs) were computed from the MTFs, the NNPSs, and theoretical ideal signal to noise ratios. The MTF was found to be close to its ideal limit and reached 0.2 at 11.8 mm(-1) and 0.1 at 14.1 mm(-1) for images acquired at an RQA-M2 technique (Mo/Mo anode, 28 kVp, 2 mm Al). Using a tungsten technique (MW2; W/Rh anode, 28 kVp, 2 mm Al), the MTF went to 0.2 at 11.2 mm(-1) and to 0.1 at 13.3 mm(-1). The DQE reached a maximum value of 54% at 1.35 mm(-1) for the RQA-M2 technique at 1.6 microC/kg and achieved a peak value of 64% at 1.75 mm(-1) for the tungsten technique (MW2) at 1.9 microC/kg. Nevertheless, the DQE showed strong exposure and frequency dependencies. The results indicated that the detector offered high MTFs and DQEs, but structured noise effects may require improved calibration before clinical implementation.

Collaboration


Dive into the Joseph Y. Lo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge