Josephine M. Forbes
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josephine M. Forbes.
Diabetes | 2008
Josephine M. Forbes; Melinda T. Coughlan; Mark E. Cooper
It is postulated that localized tissue oxidative stress is a key component in the development of diabetic nephropathy. There remains controversy, however, as to whether this is an early link between hyperglycemia and renal disease or develops as a consequence of other primary pathogenic mechanisms. In the kidney, a number of pathways that generate reactive oxygen species (ROS) such as glycolysis, specific defects in the polyol pathway, uncoupling of nitric oxide synthase, xanthine oxidase, NAD(P)H oxidase, and advanced glycation have been identified as potentially major contributors to the pathogenesis of diabetic kidney disease. In addition, a unifying hypothesis has been proposed whereby mitochondrial production of ROS in response to chronic hyperglycemia may be the key initiator for each of these pathogenic pathways. This postulate emphasizes the importance of mitochondrial dysfunction in the progression and development of diabetes complications including nephropathy. A mystery remains, however, as to why antioxidants per se have demonstrated minimal renoprotection in humans despite positive preclinical research findings. It is likely that the utility of current study approaches, such as vitamin use, may not be the ideal antioxidant strategy in human diabetic nephropathy. There is now an increasing body of data to suggest that strategies involving a more targeted antioxidant approach, using agents that penetrate specific cellular compartments, may be the elusive additive therapy required to further optimize renoprotection in diabetes.
Physiological Reviews | 2013
Josephine M. Forbes; Mark E. Cooper
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Journal of Clinical Investigation | 2001
Matthew D. Oldfield; Leon A. Bach; Josephine M. Forbes; David J. Nikolic-Paterson; Anne McRobert; Vicki Thallas; Robert C. Atkins; Tanya M. Osicka; George Jerums; Mark E. Cooper
Tubulointerstitial disease, a prominent phenomenon in diabetic nephropathy, correlates with decline in renal function. The underlying pathogenic link between chronic hyperglycemia and the development of tubulointerstitial injury has not been fully elucidated, but myofibroblast formation represents a key step in the development of tubulointerstitial fibrosis. RAGE, the receptor for advanced glycation end products (AGEs), induces the expression of TGF-beta and other cytokines that are proposed to mediate the transdifferentiation of epithelial cells to form myofibroblasts. Here we report specific binding of (125)I-AGE-BSA to cell membranes prepared from a rat proximal tubule cell line and show that the binding site was RAGE. AGE exposure induced dose-dependent epithelial-myofibroblast transdifferentiation determined by morphological changes, de novo alpha smooth-muscle actin expression, and loss of epithelial E-cadherin staining. These effects could be blocked with neutralizing Abs to RAGE or to TGF-beta. Transdifferentiation was also apparent in the proximal tubules of diabetic rats and in a renal biopsy from a patient with type 1 diabetes. The AGE cross-link breaker, phenyl-4,5-dimethylthiazolium bromide (ALT 711) reduced transdifferentiation in diabetic rats in association with reduced tubular AGE and TGF-beta expression. This study provides a novel mechanism to explain the development of tubulointerstitial disease in diabetic nephropathy and provides a new treatment target.
Circulation Research | 2003
Riccardo Candido; Josephine M. Forbes; Merlin C. Thomas; Vicki Thallas; Rachael G. Dean; Wendy C. Burns; Christos Tikellis; Rebecca H. Ritchie; Stephen M. Twigg; Mark E. Cooper; Louise M. Burrell
&NA; The formation of advanced glycation end products (AGEs) on extracellular matrix components leads to accelerated increases in collagen cross linking that contributes to myocardial stiffness in diabetes. This study determined the effect of the crosslink breaker, ALT‐711 on diabetes‐induced cardiac disease. Streptozotocin diabetes was induced in Sprague‐Dawley rats for 32 weeks. Treatment with ALT‐711 (10 mg/kg) was initiated at week 16. Diabetic hearts were characterized by increased left ventricular (LV) mass and brain natriuretic peptide (BNP) expression, decreased LV collagen solubility, and increased collagen III gene and protein expression. Diabetic hearts had significant increases in AGEs and increased expression of the AGE receptors, RAGE and AGE‐R3, in association with increases in gene and protein expression of connective tissue growth factor (CTGF). ALT‐711 treatment restored LV collagen solubility and cardiac BNP in association with reduced cardiac AGE levels and abrogated the increase in RAGE, AGE‐R3, CTGF, and collagen III expression. The present study suggests that AGEs play a central role in many of the alterations observed in the diabetic heart and that cleavage of preformed AGE crosslinks with ALT‐711 leads to attenuation of diabetes‐associated cardiac abnormalities in rats. This provides a potential new therapeutic approach for cardiovascular disease in human diabetes. (Circ Res. 2003;92:785–792.)
Diabetes | 2008
Aino Soro-Paavonen; Anna Watson; Jiaze Li; Karri Paavonen; A Koitka; Anna C. Calkin; David Barit; Melinda T. Coughlan; Brian G. Drew; Graeme I. Lancaster; Merlin C. Thomas; Josephine M. Forbes; Peter P. Nawroth; Angelika Bierhaus; Mark E. Cooper; Karin Jandeleit-Dahm
OBJECTIVE—Activation of the receptor for advanced glycation end products (RAGE) in diabetic vasculature is considered to be a key mediator of atherogenesis. This study examines the effects of deletion of RAGE on the development of atherosclerosis in the diabetic apoE−/− model of accelerated atherosclerosis. RESEARCH DESIGN AND METHODS—ApoE−/− and RAGE−/−/apoE−/− double knockout mice were rendered diabetic with streptozotocin and followed for 20 weeks, at which time plaque accumulation was assessed by en face analysis. RESULTS—Although diabetic apoE−/− mice showed increased plaque accumulation (14.9 ± 1.7%), diabetic RAGE−/−/apoE−/− mice had significantly reduced atherosclerotic plaque area (4.9 ± 0.4%) to levels not significantly different from control apoE−/− mice (4.3 ± 0.4%). These beneficial effects on the vasculature were associated with attenuation of leukocyte recruitment; decreased expression of proinflammatory mediators, including the nuclear factor-κB subunit p65, VCAM-1, and MCP-1; and reduced oxidative stress, as reflected by staining for nitrotyrosine and reduced expression of various NADPH oxidase subunits, gp91phox, p47phox, and rac-1. Both RAGE and RAGE ligands, including S100A8/A9, high mobility group box 1 (HMGB1), and the advanced glycation end product (AGE) carboxymethyllysine were increased in plaques from diabetic apoE−/− mice. Furthermore, the accumulation of AGEs and other ligands to RAGE was reduced in diabetic RAGE−/−/apoE−/− mice. CONCLUSIONS—This study provides evidence for RAGE playing a central role in the development of accelerated atherosclerosis associated with diabetes. These findings emphasize the potential utility of strategies targeting RAGE activation in the prevention and treatment of diabetic macrovascular complications.
Hypertension | 2003
Christos Tikellis; Colin I. Johnston; Josephine M. Forbes; Wendy C. Burns; Louise M. Burrell; John Risvanis; Mark E. Cooper
Abstract—ACE2, initially cloned from a human heart, is a recently described homologue of angiotensin-converting enzyme (ACE) but contains only a single enzymatic site that catalyzes the cleavage of angiotensin I to angiotensin 1–9 [Ang(1–9)] and is not inhibited by classic ACE inhibitors. It also converts angiotensin II to Ang(1–7). Although the role of ACE2 in the regulation of the renin-angiotensin system is not known, the renin-angiotensin system has been implicated in the pathogenesis of diabetic complications and in particular in diabetic nephropathy. Therefore, the aim of this study was to assess the possible involvement of this new enzyme in the kidney from diabetic Sprague-Dawley rats to compare and contrast it to ACE. ACE2 and ACE gene and protein expression were measured in the kidney after 24 weeks of streptozocin diabetes. ACE2 and ACE mRNA levels were decreased in diabetic renal tubules by ≈50% and were not influenced by ACE inhibitor treatment with ramipril. By immunostaining, both ACE2 and ACE protein were localized predominantly to renal tubules. In the diabetic kidney, there was reduced ACE2 protein expression that was prevented by ACE inhibitor therapy. The identification of ACE2 in the kidney, its modulation in diabetes, and the recent description that this enzyme plays a biological role in the generation and degradation of various angiotensin peptides provides a rationale to further explore the role of this enzyme in various pathophysiological states including diabetic complications.
Journal of The American Society of Nephrology | 2009
Melinda T. Coughlan; David R. Thorburn; Sally A. Penfold; Adrienne Laskowski; Brooke E. Harcourt; Karly C. Sourris; Adeline L.Y. Tan; Kei Fukami; Vicki Thallas-Bonke; Peter P. Nawroth; Michael Brownlee; Angelika Bierhaus; Mark E. Cooper; Josephine M. Forbes
Damaged mitochondria generate an excess of superoxide, which may mediate tissue injury in diabetes. We hypothesized that in diabetic nephropathy, advanced glycation end-products (AGEs) lead to increases in cytosolic reactive oxygen species (ROS), which facilitate the production of mitochondrial superoxide. In normoglycemic conditions, exposure of primary renal cells to AGEs, transient overexpression of the receptor for AGEs (RAGE) with an adenoviral vector, and infusion of AGEs to healthy rodents each induced renal cytosolic oxidative stress, which led to mitochondrial permeability transition and deficiency of mitochondrial complex I. Because of a lack of glucose-derived NADH, which is the substrate for complex I, these changes did not lead to excess production of mitochondrial superoxide; however, when we performed these experiments in hyperglycemic conditions in vitro or in diabetic rats, we observed significant generation of mitochondrial superoxide at the level of complex I, fueled by a sustained supply of NADH. Pharmacologic inhibition of AGE-RAGE-induced mitochondrial permeability transition in vitro abrogated production of mitochondrial superoxide; we observed a similar effect in vivo after inhibiting cytosolic ROS production with apocynin or lowering AGEs with alagebrium. Furthermore, RAGE deficiency prevented diabetes-induced increases in renal mitochondrial superoxide and renal cortical apoptosis in mice. Taken together, these studies suggest that AGE-RAGE-induced cytosolic ROS production facilitates mitochondrial superoxide production in hyperglycemic environments, providing further evidence of a role for the advanced glycation pathway in the development and progression of diabetic nephropathy.
Journal of The American Society of Nephrology | 2003
Josephine M. Forbes; Mark E. Cooper; Matthew D. Oldfield; Merlin C. Thomas
Nonenzymatic reactions between sugars and the free amino groups on proteins, lipids, and nucleic acids result in molecular dysfunction through the formation of advanced glycation end products (AGE). AGE have a wide range of chemical, cellular, and tissue effects through changes in charge, solubility, and conformation that characterize molecular senescence. AGE also interact with specific receptors and binding proteins to influence the expression of growth factors and cytokines, including TGF-beta1 and CTGF, thereby regulating the growth and proliferation of the various renal cell types. It seems that many of the pathogenic changes that occur in diabetic nephropathy may be induced by AGE. Drugs that either inhibit the formation of AGE or break AGE-induced cross-links have been shown to be renoprotective in experimental models of diabetic nephropathy. AGE are able to stimulate directly the production of extracellular matrix and inhibit its degradation. AGE modification of matrix proteins is also able to disrupt matrix-matrix and matrix-cell interactions, contributing to their profibrotic action. In addition, AGE significantly interact with the renin-angiotensin system. Recent studies have suggested that angiotensin-converting enzyme inhibitors are able to reduce the accumulation of AGE in diabetes, possibly via the inhibition of oxidative stress. This interaction may be a particularly important pathway for the development of AGE-induced damage, as it also can be attenuated by antioxidant therapy. In addition to being a consequence of oxidative stress, it is now clear that AGE can promote the generation of reactive oxygen species. It is likely that therapies that inhibit the formation of AGE will form an important part of future therapy in patients with diabetes, acting synergistically with conventional approaches to prevent diabetic renal injury.
Diabetes | 2008
Vicki Thallas-Bonke; Suzanne R. Thorpe; Melinda T. Coughlan; Kei Fukami; Felicia Y.T. Yap; Karly C. Sourris; Sally A. Penfold; Leon A. Bach; Mark E. Cooper; Josephine M. Forbes
OBJECTIVE—Excessive production of reactive oxygen species (ROS) via NADPH oxidase has been implicated in the pathogenesis of diabetic nephropathy. Since NADPH oxidase activation is closely linked to other putative pathways, its interaction with changes in protein kinase C (PKC) and increased advanced glycation was examined. RESEARCH DESIGN AND METHODS—Streptozotocin-induced diabetic or nondiabetic Sprague Dawley rats were followed for 32 weeks, with groups randomized to no treatment or the NADPH oxidase assembly inhibitor apocynin (15 mg · kg−1 · day−1; weeks 16–32). Complementary in vitro studies were performed in which primary rat mesangial cells, in the presence and absence of advanced glycation end products (AGEs)-BSA, were treated with either apocynin or the PKC-α inhibitor Ro-32-0432. RESULTS—Apocynin attenuated diabetes-associated increases in albuminuria and glomerulosclerosis. Circulating, renal cytosolic, and skin collagen–associated AGE levels in diabetic rats were not reduced by apocynin. Diabetes-induced translocation of PKC, specifically PKC-α to renal membranes, was associated with increased NADPH-dependent superoxide production and elevated renal, serum, and urinary vascular endothelial growth factor (VEGF) concentrations. In both diabetic rodents and in AGE-treated mesangial cells, blockade of NADPH oxidase or PKC-α attenuated cytosolic superoxide and PKC activation and increased VEGF. Finally, renal extracellular matrix accumulation of fibronectin and collagen IV was decreased by apocynin. CONCLUSIONS—In the context of these and previous findings by our group, we conclude that activation of NADPH oxidase via phosphorylation of PKC-α is downstream of the AGE–receptor for AGE interaction in diabetic renal disease and may provide a novel therapeutic target for diabetic nephropathy.
Nature Medicine | 2012
Angelika Bierhaus; Thomas Fleming; Stoyan Stoyanov; Andreas Leffler; Alexandru Babes; Cristian Neacsu; Susanne K. Sauer; Mirjam Eberhardt; Martina Schnölzer; Felix Lasischka; Winfried Neuhuber; Tatjana I. Kichko; Ilze Konrade; Ralf Elvert; Walter Mier; Valdis Pirags; Ivan K. Lukic; Michael Morcos; Thomas Dehmer; Naila Rabbani; Paul J. Thornalley; Diane Edelstein; Carla Nau; Josephine M. Forbes; Per M. Humpert; Markus Schwaninger; Dan Ziegler; David M. Stern; Mark E. Cooper; Uwe Haberkorn
This study establishes a mechanism for metabolic hyperalgesia based on the glycolytic metabolite methylglyoxal. We found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain. Methylglyoxal depolarizes sensory neurons and induces post-translational modifications of the voltage-gated sodium channel Nav1.8, which are associated with increased electrical excitability and facilitated firing of nociceptive neurons, whereas it promotes the slow inactivation of Nav1.7. In mice, treatment with methylglyoxal reduces nerve conduction velocity, facilitates neurosecretion of calcitonin gene-related peptide, increases cyclooxygenase-2 (COX-2) expression and evokes thermal and mechanical hyperalgesia. This hyperalgesia is reflected by increased blood flow in brain regions that are involved in pain processing. We also found similar changes in streptozotocin-induced and genetic mouse models of diabetes but not in Nav1.8 knockout (Scn10−/−) mice. Several strategies that include a methylglyoxal scavenger are effective in reducing methylglyoxal- and diabetes-induced hyperalgesia. This previously undescribed concept of metabolically driven hyperalgesia provides a new basis for the design of therapeutic interventions for painful diabetic neuropathy.