Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josephine R. Brown is active.

Publication


Featured researches published by Josephine R. Brown.


Nature | 2012

More extreme swings of the South Pacific convergence zone due to greenhouse warming

Wenju Cai; Matthieu Lengaigne; Simon Borlace; Matthew D. Collins; Tim Cowan; Michael J. McPhaden; Axel Timmermann; Scott B. Power; Josephine R. Brown; Christophe Menkes; Arona Ngari; Emmanuel Vincent; Matthew J. Widlansky

The South Pacific convergence zone (SPCZ) is the Southern Hemisphere’s most expansive and persistent rain band, extending from the equatorial western Pacific Ocean southeastward towards French Polynesia. Owing to its strong rainfall gradient, a small displacement in the position of the SPCZ causes drastic changes to hydroclimatic conditions and the frequency of extreme weather events—such as droughts, floods and tropical cyclones—experienced by vulnerable island countries in the region. The SPCZ position varies from its climatological mean location with the El Niño/Southern Oscillation (ENSO), moving a few degrees northward during moderate El Niño events and southward during La Niña events. During strong El Niño events, however, the SPCZ undergoes an extreme swing—by up to ten degrees of latitude toward the Equator—and collapses to a more zonally oriented structure with commensurately severe weather impacts. Understanding changes in the characteristics of the SPCZ in a changing climate is therefore of broad scientific and socioeconomic interest. Here we present climate modelling evidence for a near doubling in the occurrences of zonal SPCZ events between the periods 1891–1990 and 1991–2090 in response to greenhouse warming, even in the absence of a consensus on how ENSO will change. We estimate the increase in zonal SPCZ events from an aggregation of the climate models in the Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5) multi-model database that are able to simulate such events. The change is caused by a projected enhanced equatorial warming in the Pacific and may lead to more frequent occurrences of extreme events across the Pacific island nations most affected by zonal SPCZ events.


Journal of Climate | 2011

Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget

John M. Haynes; Christian Jakob; William B. Rossow; George Tselioudis; Josephine R. Brown

Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contributiontothetop-of-atmosphere(TOA)radiationbalance,particularlyintheshortwaveportionoftheenergy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polarorbitersatellitedatafromtheInternationalSatelliteCloudClimatologyProject(ISCCP)areusedtoquantifylargescale,recurring modesofcloudiness,andactiveobservationsfrom CloudSatand Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrenceoflowcloud,with79%ofallcloudlayersobservedhavingtopsbelow3 km,butmultiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.


Paleoceanography | 2008

Mid-Holocene ENSO: Issues in quantitative model-proxy data comparisons

Josephine R. Brown; Alexander W. Tudhope; Matthew D. Collins; Helen V. McGregor

(1) Evaluation of climate model simulations using observed data contributes to the assessment of confidence in model predictions of future climate change. The mid-Holocene represents an opportunity to evaluate model simulations of El Nino-Southern Oscillation (ENSO) in comparison with coral proxy evidence of reduced ENSO amplitude. Quantitative comparisons between coral records and model output have been limited by (1) the use of different measures of ENSO amplitude, (2) possible sampling of natural variability in short records, and (3) uncertainty about the stationarity of the relationship between central Pacific sea surface temperature (SST) variability and ENSO signals at the coral site. We examine these issues using modern and fossil coral records from the western Pacific and model simulations of preindustrial and mid-Holocene climate. As a measure of ENSO amplitude, the standard deviation is found to be preferable to event frequency or size as event-based measures are highly dependent on the choice of threshold and may be unreliable for a small number of events. Model ENSO amplitude is found to be strongly dependent on the choice of averaging period, with calendar year averages smoothing the seasonal ENSO signal. A relatively robust relationship between SST variability in the NINO3.4 region and the ENSO SST and precipitation anomalies archived in corals is demonstrated for the instrumental period and for a set of model simulations. Remaining uncertainty about changes in ENSO teleconnections under paleoclimate conditions implies the need for additional proxy records from ENSO- sensitive regions before quantitative reconstructions of ENSO amplitude can be used to evaluate model sensitivity.


Journal of Climate | 2013

Paleoclimate Data-Model Comparison and the Role of Climate Forcings over the Past 1500 Years*

Steven J. Phipps; Helen V. McGregor; Joëlle Gergis; Ailie J. E. Gallant; Raphael Neukom; Samantha Stevenson; Duncan Ackerley; Josephine R. Brown; Matt J. Fischer; Tas D. van Ommen

The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are identified and discussed. In the first of two case studies, the climate model simulations are compared with multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemisphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropogenic signal dominates during the industrial period. It is also found that seasonal and geographical biases may cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend. Inthesecondcasestudy,themodelsimulationsarecomparedwithacorald 18 OrecordfromthecentralPacific Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic impact on El Ni~ Oscillation. The proxy climate relationship is found to change over time, challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations of current techniques and demonstrate the need to develop alternative approaches.


Journal of Climate | 2011

Evaluation of the South Pacific Convergence Zone in IPCC AR4 Climate Model Simulations of the Twentieth Century

Josephine R. Brown; Scott B. Power; François Delage; R. A. Colman; Aurel F. Moise; Bradley F. Murphy

Abstract Understanding how the South Pacific convergence zone (SPCZ) may change in the future requires the use of global coupled atmosphere–ocean models. It is therefore important to evaluate the ability of such models to realistically simulate the SPCZ. The simulation of the SPCZ in 24 coupled model simulations of the twentieth century is examined. The models and simulations are those used for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The seasonal climatology and interannual variability of the SPCZ is evaluated using observed and model precipitation. Twenty models simulate a distinct SPCZ, while four models merge intertropical convergence zone and SPCZ precipitation. The majority of models simulate an SPCZ with an overly zonal orientation, rather than extending in a diagonal band into the southeast Pacific as observed. Two-thirds of models capture the observed meridional displacement of the SPCZ during El Nino and La Nina events. The four models that use ...


Climate Dynamics | 2013

The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate

Josephine R. Brown; Aurel F. Moise; R. A. Colman

The South Pacific Convergence Zone (SPCZ) is evaluated in historical simulations from 26 Coupled Model Intercomparison Project Phase 5 (CMIP5) models, and compared with previous generation CMIP3 models. A subset of 24 CMIP5 models are able to simulate a distinct SPCZ in the December to February (DJF) austral summer, although the position of the SPCZ in these models is too zonal compared with observations. The spatial pattern of SPCZ precipitation is improved in CMIP5 models relative to CMIP3 models, although the spurious double ITCZ precipitation band in the eastern Pacific is intensified in many CMIP5 models. All CMIP5 models examined capture some interannual variability of SPCZ latitude, and 19 models simulate a realistic correlation with El Niño–Southern Oscillation. In simulations of the twenty-first century under the RCP8.5 emission scenario, no consistent shift in the mean position of the DJF SPCZ is identified. Several models simulate significant shifts northward, and a similar number of models simulate significant southward shifts. The majority of CMIP5 models simulate an increase in mean DJF SPCZ precipitation, and there is an intensification of the eastern Pacific double ITCZ precipitation band in many models. Most models simulate regions of increased precipitation in the western part of the SPCZ and near the equator, and regions of decreased precipitation at the eastern edge of the SPCZ. Decomposition of SPCZ precipitation changes into dynamic and thermodynamic components reveals predominantly increased precipitation due to thermodynamic changes, while dynamic changes lead to regions of both positive and negative precipitation anomalies.


Climatic Change | 2013

Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific

Jaclyn N. Brown; Alex Sen Gupta; Josephine R. Brown; Les Muir; James S. Risbey; Penny Whetton; Xuebin Zhang; Alexandre Ganachaud; Brad Murphy; Susan Wijffels

Regional climate projections in the Pacific region are potentially sensitive to a range of existing model biases. This study examines the implications of coupled model biases on regional climate projections in the tropical western Pacific. Model biases appear in the simulation of the El Niño Southern Oscillation, the location and movement of the South Pacific Convergence Zone, rainfall patterns, and the mean state of the ocean–atmosphere system including the cold tongue bias and erroneous location of the edge of the Western Pacific warm pool. These biases are examined in the CMIP3 20th century climate models and used to provide some context to the uncertainty in interpretations of regional-scale climate projections for the 21st century. To demonstrate, we provide examples for two island nations that are located in different climate zones and so are affected by different biases: Nauru and Palau. We discuss some of the common approaches to analyze climate projections and whether they are effective in reducing the effect of model biases. These approaches include model selection, calculating multi model means, downscaling and bias correcting.


Journal of Climate | 2010

An Evaluation of Rainfall Frequency and Intensity over the Australian Region in a Global Climate Model

Josephine R. Brown; Christian Jakob; John M. Haynes

Abstract Observed regional rainfall characteristics can be analyzed by examining both the frequency and intensity of different categories of rainfall. A complementary approach is to consider rainfall characteristics associated with regional synoptic regimes. These two approaches are combined here to examine daily rainfall characteristics over the Australian region, providing a target for model simulations. Using gridded daily rainfall data for the period 1997–2007, rainfall at each grid point and averaged over several sites is decomposed into the frequency of rainfall events and the intensity of rainfall associated with each event. Daily sea level pressure is classified using a self-organizing map, and rainfall on corresponding days is assigned to the resulting synoptic regimes. This technique is then used to evaluate rainfall in the new Australian Community Climate and Earth-System Simulator (ACCESS) global climate model and separate the influence of large-scale circulation errors and errors due to the r...


Journal of Climate | 2014

Can We Constrain CMIP5 Rainfall Projections in the Tropical Pacific Based on Surface Warming Patterns

Michael Grose; Jonas Bhend; Sugata Narsey; Alex Sen Gupta; Josephine R. Brown

AbstractClimate warming has large implications for rainfall patterns, and identifying the most plausible pattern of rainfall change over the next century among various model projections would be valuable for future planning. The spatial pattern of projected sea surface temperature change has a key influence on rainfall changes in the tropical Pacific Ocean. Here it is shown that simple indices of the size of the equatorial peak in the spatial pattern of warming and to a lesser extent the hemispheric asymmetry in warming are useful for classifying the surface temperature change in different models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Models with a more pronounced equatorial warming show a fairly distinct rainfall response compared to those with more uniform warming, including a greater “warmer-get-wetter” or dynamical response, whereby rainfall increases follow the surface warming anomaly. Models with a more uniform warming pattern project a smaller rainfall increase at the eq...


Journal of Climate | 2016

Will a Warmer World Mean a Wetter or Drier Australian Monsoon

Josephine R. Brown; Aurel F. Moise; R. A. Colman; Huqiang Zhang

AbstractMultimodel mean projections of the Australian summer monsoon show little change in precipitation in a future warmer climate, even under the highest emission scenario. However, there is large uncertainty in this projection, with model projections ranging from around a 40% increase to a 40% decrease in summer monsoon precipitation. To understand the source of this model uncertainty, a set of 33 climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) is divided into groups based on their future precipitation projections (DRY, MID, and WET terciles). The DRY model mean has enhanced sea surface temperature (SST) warming across the equatorial Pacific, with maximum increases in precipitation in the western equatorial Pacific. The DRY model mean also has a large cold bias in present day SSTs in this region. The WET model mean has the largest warming in the central and eastern equatorial Pacific, with precipitation increases over much of Australia. These results suggest lower confiden...

Collaboration


Dive into the Josephine R. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Sen Gupta

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Smith

Bureau of Meteorology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge