Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josephine S. Modica-Napolitano is active.

Publication


Featured researches published by Josephine S. Modica-Napolitano.


Advanced Drug Delivery Reviews | 2001

Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells

Josephine S. Modica-Napolitano; June R. Aprille

Traditional chemotherapies, aimed at DNA replication in rapidly dividing cells, have achieved only limited success in the treatment of carcinomas due largely to their lack of specificity for cells of tumorigenic origin. It is important, therefore, to investigate treatment strategies aimed at novel cellular targets that are sufficiently different between normal cells and cancer cells so as to provide a basis for selective tumor cell killing. Delocalized lipophilic cations (DLCs) are concentrated by cells and into mitochondria in response to negative inside transmembrane potentials. The higher plasma and/or mitochondrial membrane potentials of carcinoma cells compared to normal epithelial cells account for the selective accumulation of DLCs in carcinoma mitochondria. Since most DLCs are toxic to mitochondria at high concentrations, their selective accumulation in carcinoma mitochondria and consequent mitochondrial toxicity provide a basis for selective carcinoma cell killing. Several of these compounds have already displayed some degree of efficacy as chemotherapeutic agents in vitro and in vivo. The effectiveness of DLCs can also be enhanced by their use in photochemotherapy or combination drug therapy. Discovery of the biochemical differences that account for the higher membrane potentials in carcinoma cells is expected to lead to the design of new DLCs targeted specifically to those differences, resulting in even greater selectivity and efficacy for tumor cell killing.


Pharmacological Reviews | 2008

Antipsychotic Drugs: Comparison in Animal Models of Efficacy, Neurotransmitter Regulation, and Neuroprotection

Jeffrey A. Lieberman; Frank P. Bymaster; Herbert Y. Meltzer; Ariel Y. Deutch; Gary E. Duncan; Christine E. Marx; June R. Aprille; Donard S. Dwyer; Xin Min Li; Sahebarao P. Mahadik; Ronald S. Duman; Joseph H. Porter; Josephine S. Modica-Napolitano; Samuel S. Newton; John G. Csernansky

Various lines of evidence indicate the presence of progressive pathophysiological processes occurring within the brains of patients with schizophrenia. By modulating chemical neurotransmission, antipsychotic drugs may influence a variety of functions regulating neuronal resilience and viability and have the potential for neuroprotection. This article reviews the current literature describing preclinical and clinical studies that evaluate the efficacy of antipsychotic drugs, their mechanism of action and the potential of first- and second-generation antipsychotic drugs to exert effects on cellular processes that may be neuroprotective in schizophrenia. The evidence to date suggests that although all antipsychotic drugs have the ability to reduce psychotic symptoms via D2 receptor antagonism, some antipsychotics may differ in other pharmacological properties and their capacities to mitigate and possibly reverse cellular processes that may underlie the pathophysiology of schizophrenia.


Expert Reviews in Molecular Medicine | 2002

Mitochondria as targets for detection and treatment of cancer

Josephine S. Modica-Napolitano; Keshav K. Singh

Mitochondria are dynamic intracellular organelles that play a central role in oxidative metabolism and apoptosis. The recent resurgence of interest in the study of mitochondria has been fuelled in large part by the recognition that genetic and/or metabolic alterations in this organelle are causative or contributing factors in a variety of human diseases including cancer. Several distinct differences between the mitochondria of normal cells and cancer cells have already been observed at the genetic, molecular and biochemical levels. As reviewed in this article, certain of these alterations in mitochondrial structure and function might prove clinically useful either as markers for the early detection of cancer or as unique molecular sites against which novel and selective chemotherapeutic agents might be targeted.


Current Molecular Medicine | 2007

Mitochondria and Human Cancer

Josephine S. Modica-Napolitano; Mariola Kulawiec; Keshav K. Singh

The better part of a century has passed since Otto Warburg first hypothesized that unique phenotypic characteristics of tumor cells might be associated with an impairment in the respiratory capacity of these cells. Since then a number of distinct differences between the mitochondria of normal cells and cancer cells have been observed at the genetic, molecular, and biochemical levels. This article begins with a general overview of mitochondrial structure and function, and then outlines more specifically the metabolic and molecular alterations in mitochondria associated with human cancer and their clinical implications. Special emphasis is placed on mtDNA mutations and their potential role in carcinogenesis. The potential use of mitochondria as biomarkers for early detection of cancer, or as unique cellular targets for novel and selective anti-cancer agents is also discussed.


Biochemical and Biophysical Research Communications | 1984

Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria

Josephine S. Modica-Napolitano; Michael J. Weiss; Lan Bo Chen; June R. Aprille

Rhodamine 123 accumulates in the mitochondria of living cells and exhibits selective anticarcinoma activity. The biochemical basis of toxicity was investigated by testing the effect of the dye on isolated rat liver mitochondria. Much lower concentrations of rhodamine 123 were required to inhibit ADP-stimulated respiration and ATP synthesis in well-coupled energized mitochondria than were required to inhibit uncoupled respiration and uncoupler-stimulated ATP hydrolysis. The amount of rhodamine 123 associated with the mitochondria was several-fold greater under energized as compared to non-energized conditions, which may explain why coupled functions appeared to be more sensitive than uncoupled functions to inhibition at low concentrations of rhodamine 123. It was concluded that the site of rhodamine 123 inhibition is most likely the F0F1 ATPase complex and possibly electron transfer reactions as well.


Archives of Pharmacal Research | 2003

Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro.

Josephine S. Modica-Napolitano; Christopher J. Lagace; William A. Brennan; June R. Aprille

A series of typical (chlorpromazine, haloperidol and thioridazine) and atypical (risperidone, quetiapine, clozapine and olanzapine) antipsychotics were tested for effects on integrated bioenergetic functions of isolated rat liver mitochondria. Polarographic measurement of oxygen consumption in freshly isolated mitochondria showed that electron transfer activity at respiratory complex I is inhibited by chlorpromazine, haloperidol, risperidone, and quetiapine, but not by clozapine, olanzapine, or thioridazine. Chlorpromazine and thioridazine act as modest uncouplers of oxidative phosphorylation. The typical neuroleptics inhibited NADH-coenzyme Q reductase in freeze-thawed mitochondria, which is a direct measure of complex I enzyme activity. The inhibition of NADH-coenzyme Q reductase activity by the atypicals risperidone and quetiapine was 2-4 fold less than that for the typical neuroleptics. Clozapine and olanzapine had only slight effects on NADH-coenzyme Q reductase activity, even at 200 μM. The relative potencies of these neuroleptic drugs as inhibitors of mitochondrial bioenergetic function is similar to their relative potencies as risk factors in the reported incidence of extrapyramidal symptoms, including tardive dyskinesia (TD). This suggests that compromised bioenergetic function may be involved in the cellular pathology underlying TD.


Biological Psychiatry | 2004

Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder

Josephine S. Modica-Napolitano; Perry F. Renshaw

BACKGROUND A growing body of experimental evidence suggests that mitochondrial dysfunction, including alterations in phospholipid metabolism, might be involved in the pathophysiology of affective illnesses, such as depression and bipolar disorder. The purpose of this study was to determine whether the phosphomonoester phosphoethanolamine (PE) and the lipid metabolite choline (Cho), which are known to be altered in depression and bipolar disorder, and/or their precursors/metabolites, might directly affect mitochondrial bioenergetic function in vitro. METHODS To this end, rates of oxygen consumption in freshly isolated, intact mitochondria were determined polarographically in the presence and absence of PE, Cho, ethanolamine (Etn), glycerophosphoethanolamine (GPE), and glycerophosphocholine (GPC). RESULTS The data demonstrate that PE and Etn inhibit mitochondrial respiratory activity in a dose-dependent manner, whereas Cho, GPC, and GPE have no measurable effect on bioenergetic function. CONCLUSIONS This reflects a specific inhibition by Etn and PE on mitochondrial function rather than a more generalized phenomenon induced by similarities in structure between the lipid metabolites. These results also suggest a possible relationship between mitochondrial dysfunction and altered phospholipid metabolism in the brains of patients with depression and bipolar disorder.


International Journal of Molecular Sciences | 2015

Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

Josephine S. Modica-Napolitano; Volkmar Weissig

Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy.


Integrative and Comparative Biology | 2004

Role of Nitric Oxide and Mitochondria in Control of Firefly Flash

June R. Aprille; Christopher J. Lagace; Josephine S. Modica-Napolitano; Barry A. Trimmer

Abstract In light-producing cells (photocytes) of the firefly light organ, mitochondria are clustered in the cell periphery, positioned between the tracheolar air supply and the oxygen-requiring bioluminescent reactants which are sequestered in more centrally-localized peroxisomes. This relative positioning suggests that mitochondria could control oxygen availability for the light reaction. We hypothesized that active cellular respiration would make the interior regions of the photocytes relatively hypoxic, and that the “on” signal for production of bioluminescence might depend on inhibition of mitochondrial oxygen consumption, which would allow delivered oxygen to pass through the peripheral mitochondrial zone to reach peroxisomes deep in the cell interior. We published recently that exogenous NO induces bioluminescence in the intact firefly; that NO mediates octopamine-induced bioluminescence in the dissected lantern, and that nitric oxide synthase is abundant in cells of the tracheolar system of the light organ. Additional experiments showed that nitric oxide gas (NO) inhibits respiration in isolated lantern mitochondria. Inhibition is reversed by bright light, and this inhibition is relieved when the light is turned off. Altogether, the results support the idea that NO triggers light production by reversible inhibition of mitochondrial respiration in lantern cells, and probably in tracheolar cells as well. The data also suggest that the light of bioluminescence itself relieves NO inhibition thus contributing to rapid on/off switching. While other mechanisms may be in play, NO production that is directly related to neural input appears to have a key role in the oxygen gating that controls flash communication signals.


Analytical Biochemistry | 1991

Denaturing gradient gel method for mapping single base changes in human mitochondrial DNA

Kyunglim L. Yoon; Josephine S. Modica-Napolitano; Susan G. Ernst; June R. Aprille

A denaturing gradient gel electrophoresis (DGGE) method is described that detects even single base pair changes in mitochondrial DNA (mtDNA). In this method, restriction fragments of mtDNA are electrophoresed in a urea/formamide gradient gel at 60 degrees C. Migration distance of each mtDNA fragment in the gel depends on melting behavior which reflects base composition. Fragments are located by Southern blotting with specific mtDNA probes. With just four carefully chosen restriction enzymes and as little as 50-100 ng of mtDNA, the method covers almost the entire human mitochondrial genome. To demonstrate the method, human mtDNA was analyzed. In six normal individuals, DGGE revealed melting behavior polymorphisms (MBPs) in mtDNA fragments that were not detected by restriction fragment length polymorphism (RFLP) analysis in agarose gels. Another individual, shown to have a melting behavior polymorphism in the cytochrome b coding region, was studied in detail. By mapping, the mutation was deduced to lie between nt 14905 and 15370. The affected fragment was amplified by PCR and sequenced. Specific base changes were identified in the region predicted by the gel result. This method will be especially useful as a diagnostic tool in mitochondrial disease for rapid localization of mtDNA mutations to specific regions of the genome, but DGGE also could complement RFLP analysis as a more sensitive method to follow maternal lineage in human and animal populations in a variety of research fields.

Collaboration


Dive into the Josephine S. Modica-Napolitano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keshav K. Singh

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Y. Deutch

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary E. Duncan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge