Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josh Kacher is active.

Publication


Featured researches published by Josh Kacher.


Ultramicroscopy | 2009

Bragg's Law diffraction simulations for electron backscatter diffraction analysis

Josh Kacher; Colin Landon; Brent L. Adams; David T. Fullwood

In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Braggs Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of approximately 0.04 degrees and an elastic strain resolution of approximately 7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.


Philosophical Magazine | 2014

In situand tomographic analysis of dislocation/grain boundary interactions in α-titanium

Josh Kacher; I.M. Robertson

In situ straining in the transmission electron microscope and diffraction-contrast electron tomography have been applied to the investigation of dislocation/grain boundary and dislocation/twin boundary interactions in α-Ti. It was found that, similar to FCC materials, the transfer of dislocations across grain boundaries is governed primarily by the minimization of the magnitude of the Burgers vector of the residual grain boundary dislocation. That is, grain boundary strain energy density minimization determines the selection of the emitted slip system.


Nature Materials | 2016

Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

Joshua C. Agar; Anoop R. Damodaran; M. B. Okatan; Josh Kacher; Christoph Gammer; Rama K. Vasudevan; Shishir Pandya; Liv R. Dedon; R. V. K. Mangalam; Gabriel A. Velarde; Stephen Jesse; Nina Balke; Andrew M. Minor; Sergei V. Kalinin; Lane W. Martin

Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr1-xTixO3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.


Micron | 2012

In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels

Josh Kacher; Grace S. Liu; I.M. Robertson

The effects of heavy-ion irradiation on dislocation processes in stainless steels were investigated using in situ irradiation and deformation in the transmission electron microscope as well as post mortem electron tomography to retrieve information on the three-dimensional dislocation state. Irradiation-induced defects were found to pose a strong collective barrier to dislocation motion, leading to dislocation pileups forming in grain interiors and at grain boundaries. The passage of multiple dislocations along the same slip plane removes the irradiation defects and leads to the eventual formation of a defect-free channel. These channels are composed of densely tangled dislocation networks which line the channel-matrix walls as well as residual dislocation debris in the channel interiors. The structures of the dislocation tangles were found to be similar to those encountered in later stages of deformation in unirradiated materials, with the exception that they developed earlier in the deformation process and were confined to the defect free channels. Also, defect free channels were found to widen through both source widening as well as complex cross-slip mechanisms.


Microscopy and Microanalysis | 2011

Pattern Center Determination in Electron Backscatter Diffraction Microscopy

Jay Basinger; David T. Fullwood; Josh Kacher; Brent L. Adams

The pattern center of an electron backscatter diffraction (EBSD) image indicates the relative position of the image with reference to the interaction volume of the sample. As interest grows in high-resolution EBSD techniques, accurate knowledge of this position is essential for precise interpretation of the EBSD features. In a typical EBSD framework, Kikuchi bands are recorded on a phosphor screen. If the flat phosphor were instead shaped as a sphere, with its center at the specimens electron interaction volume, then the incident backscattered electrons would form Kikuchi bands on that sphere with parallel band edges centered on great circles. In this article, the authors present a method of pattern center (PC) refinement that maps bands from the planar phosphor onto a virtual spherical screen and measures the deviation of bands from a great circle and from possessing parallel edges. Potential sources of noise and error, as well as methods for reducing these, are discussed. Finally, results are presented on the application of the PC algorithm to two types of simulated EBSD patterns and two experimental setups, and the resolution of the method is discussed.


Philosophical Magazine | 2016

In situTEM characterisation of dislocation interactions in α-titanium

Josh Kacher; I.M. Robertson

Abstract In situ straining in the transmission electron microscope and diffraction-contrast electron tomography has been applied to investigate dislocation interactions in α-Ti. Dislocation debris, in the form of small loops, was seen to form from sequential cross-slip events. Electron tomography provided direct three-dimensional visualisation of the dislocation structures, allowing accurate identification of slip planes, dislocation line directions and spatial relations between dislocations.


Applied Physics Letters | 2016

Local and transient nanoscale strain mapping during in situ deformation

Christoph Gammer; Josh Kacher; C. Czarnik; O. L. Warren; Jim Ciston; Andrew M. Minor

The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. Here, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Our results demonstrate how large multidimensional data sets captured with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.


Applied Physics Letters | 2016

An experimental and computational study of size-dependent contact-angle of dewetted metal nanodroplets below its melting temperature

Bruno Azeredo; Saikumar R. Yeratapally; Josh Kacher; Placid M. Ferreira; Michael D. Sangid

Decorating 1D nanostructures (e.g., wires and tubes) with metal nanoparticles serves as a hierarchical approach to integrate the functionalities of metal oxides, semiconductors, and metals. This paper examines a simple and low-temperature approach to self-assembling gold nanoparticles (Au-np)—a common catalytic material—onto silicon nanowires (SiNWs). A conformal ultra-thin film (i.e., <15 nm thick) is deposited onto SiNWs and thermally dewetted, forming nanoparticles in the 6–70 nm range. Two parameters of its morphology are dependent upon dewetting conditions: particle size and particle contact angle. Using transmission electron microscopy imaging, it is found that annealing temperature profile has a strong effect on the particle size. Additionally, the contact angle is found to be dependent on particle size and temperature even below the eutectic temperature of the Au-Si alloy. Molecular dynamics simulations were performed to investigate potential explanations for such experimental observation. In this...


Philosophical Magazine | 2015

Multiscale characterization of dislocation processes in Al 5754

Josh Kacher; Raja K. Mishra; Andrew M. Minor

Multiscale characterization was performed on an Al–Mg alloy, Al 5754 O-temper, including in situ mechanical deformation in both the scanning electron microscope and the transmission electron microscope. Scanning electron microscopy characterization showed corresponding inhomogeneity in the dislocation and Mg distribution, with higher levels of Mg correlating with elevated levels of dislocation density. At the nanoscale, in situ transmission electron microscopy straining experiments showed that dislocation propagation through the Al matrix is characterized by frequent interactions with obstacles smaller than the imaging resolution that resulted in the formation of dislocation debris in the form of dislocation loops. Post-mortem chemical characterization and comparison to dislocation loop behaviour in an Al–Cr alloy suggests that these obstacles are small Mg clusters. Previous theoretical work and indirect experimental evidence have suggested that these Mg nanoclusters are important factors contributing to strain instabilities in Al–Mg alloys. This study provides direct experimental characterization of the interaction of glissile dislocations with these nanoclusters and the stress needed for dislocations to overcome them.


1 International Conference on 3D Materials Science | 2012

Three‐Dimensional Characterization of Dislocation‐Defect Interactions

Josh Kacher; Grace S. Liu; I.M. Robertson

Transmission electron microscopes play a critical role in building our knowledge base of the atomic structure and composition as well as the electronic and magnetic state of materials. This information is a two-dimensional snapshot of the material state and requires a posteriori analysis to reveal the reaction or processing pathway, or to correlate with a macroscopic property. However, using electron tomography it is feasible to recover the information lost in the electron beam direction and obtain a three-dimensional view of the internal structure in an electron transparent foil. In this paper, example applications of diffraction-contrast electron tomography to understand various dislocation-obstacle interactions are presented and discussed.

Collaboration


Dive into the Josh Kacher's collaboration.

Top Co-Authors

Avatar

I.M. Robertson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent L. Adams

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Christoph Gammer

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bai Cui

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Colin Landon

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Matt Nowell

Charles Stark Draper Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Knapp

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge