Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josh Lauring is active.

Publication


Featured researches published by Josh Lauring.


Molecular Cell | 2011

NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming

Alex J. Kuo; Peggie Cheung; Kaifu Chen; Barry M. Zee; Mitomu Kioi; Josh Lauring; Yuanxin Xi; Ben Ho Park; Xiaobing Shi; Benjamin A. Garcia; Wei Li; Or Gozani

The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here, we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together, our findings establish H3K36me2 as the primary product generated by NSD2 and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming.


Clinical Cancer Research | 2014

Detection of Cancer DNA in Plasma of Patients with Early-Stage Breast Cancer

Julia A. Beaver; Danijela Jelovac; Sasidharan Balukrishna; Rory L. Cochran; Sarah Croessmann; Daniel J. Zabransky; Hong Yuen Wong; Patricia Valda Toro; Justin Cidado; Brian G. Blair; David Chu; Timothy F. Burns; Michaela J. Higgins; Vered Stearns; Lisa K. Jacobs; Mehran Habibi; Julie R. Lange; Paula J. Hurley; Josh Lauring; Dustin A. VanDenBerg; Jill Kessler; Stacie Jeter; Michael L. Samuels; Dianna Maar; Leslie Cope; Ashley Cimino-Mathews; Pedram Argani; Antonio C. Wolff; Ben Ho Park

Purpose: Detecting circulating plasma tumor DNA (ptDNA) in patients with early-stage cancer has the potential to change how oncologists recommend systemic therapies for solid tumors after surgery. Droplet digital polymerase chain reaction (ddPCR) is a novel sensitive and specific platform for mutation detection. Experimental Design: In this prospective study, primary breast tumors and matched pre- and postsurgery blood samples were collected from patients with early-stage breast cancer (n = 29). Tumors (n = 30) were analyzed by Sanger sequencing for common PIK3CA mutations, and DNA from these tumors and matched plasma were then analyzed for PIK3CA mutations using ddPCR. Results: Sequencing of tumors identified seven PIK3CA exon 20 mutations (H1047R) and three exon 9 mutations (E545K). Analysis of tumors by ddPCR confirmed these mutations and identified five additional mutations. Presurgery plasma samples (n = 29) were then analyzed for PIK3CA mutations using ddPCR. Of the 15 PIK3CA mutations detected in tumors by ddPCR, 14 of the corresponding mutations were detected in presurgical ptDNA, whereas no mutations were found in plasma from patients with PIK3CA wild-type tumors (sensitivity 93.3%, specificity 100%). Ten patients with mutation-positive ptDNA presurgery had ddPCR analysis of postsurgery plasma, with five patients having detectable ptDNA postsurgery. Conclusions: This prospective study demonstrates accurate mutation detection in tumor tissues using ddPCR, and that ptDNA can be detected in blood before and after surgery in patients with early-stage breast cancer. Future studies can now address whether ptDNA detected after surgery identifies patients at risk for recurrence, which could guide chemotherapy decisions for individual patients. Clin Cancer Res; 20(10); 2643–50. ©2014 AACR.


Immunity | 2003

A conserved transcriptional enhancer regulates RAG gene expression in developing B cells.

Lih Yun Hsu; Josh Lauring; Hong Erh Liang; Stephen Greenbaum; Dragana Cado; Yuan Zhuang; Mark S. Schlissel

Although expression of the RAG1 and RAG2 genes is essential for lymphocyte development, the mechanisms responsible for the lymphoid- and developmental stage-specific regulation of these genes are poorly understood. We have identified a novel, evolutionarily conserved transcriptional enhancer in the RAG locus, called Erag, which was essential for the expression of a chromosomal reporter gene driven by either RAG promoter. Targeted deletion of Erag in the mouse germline results in a partial block in B cell development associated with deficient V(D)J recombination, whereas T cell development appears unaffected. We found that E2A transcription factors bind to Erag in vivo and can transactivate Erag-dependent reporter constructs in cotransfected cell lines. These findings lead us to conclude that RAG transcription is regulated by distinct elements in developing B and T cells and that Erag is required for optimal levels of RAG expression in early B cell precursors but not in T cells.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Knockin of mutant PIK3CA activates multiple oncogenic pathways

John P. Gustin; Bedri Karakas; Michele B. Weiss; Abde M. Abukhdeir; Josh Lauring; Joseph P. Garay; David Cosgrove; Akina Tamaki; Hiroyuki Konishi; Yuko Konishi; Morassa Mohseni; Grace M. Wang; D. Marc Rosen; Samuel R. Denmeade; Michaela J. Higgins; Michele I. Vitolo; Kurtis E. Bachman; Ben Ho Park

The phosphatidylinositol 3-kinase subunit PIK3CA is frequently mutated in human cancers. Here we used gene targeting to “knock in” PIK3CA mutations into human breast epithelial cells to identify new therapeutic targets associated with oncogenic PIK3CA. Mutant PIK3CA knockin cells were capable of epidermal growth factor and mTOR-independent cell proliferation that was associated with AKT, ERK, and GSK3β phosphorylation. Paradoxically, the GSK3β inhibitors lithium chloride and SB216763 selectively decreased the proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and led to a decrease in the GSK3β target gene CYCLIN D1. Oral treatment with lithium preferentially inhibited the growth of nude mouse xenografts of HCT-116 colon cancer cells with mutant PIK3CA compared with isogenic HCT-116 knockout cells containing only wild-type PIK3CA. Our findings suggest GSK3β is an important effector of mutant PIK3CA, and that lithium, an FDA-approved therapy for bipolar disorders, has selective antineoplastic properties against cancers that harbor these mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells

Hiroyuki Konishi; Morassa Mohseni; Akina Tamaki; Joseph P. Garay; Sarah Croessmann; Sivasundaram Karnan; Akinobu Ota; Hong Yuen Wong; Yuko Konishi; Bedri Karakas; Khola Tahir; Abde M. Abukhdeir; John P. Gustin; Justin Cidado; Grace M. Wang; David Cosgrove; Rory L. Cochran; Danijela Jelovac; Michaela J. Higgins; Sabrina Arena; Lauren Hawkins; Josh Lauring; Amy L. Gross; Christopher M. Heaphy; Yositaka Hosokawa; Edward Gabrielson; Alan K. Meeker; Kala Visvanathan; Pedram Argani; Kurtis E. Bachman

Biallelic inactivation of cancer susceptibility gene BRCA1 leads to breast and ovarian carcinogenesis. Paradoxically, BRCA1 deficiency in mice results in early embryonic lethality, and similarly, lack of BRCA1 in human cells is thought to result in cellular lethality in view of BRCA1s essential function. To survive homozygous BRCA1 inactivation during tumorigenesis, precancerous cells must accumulate additional genetic alterations, such as p53 mutations, but this requirement for an extra genetic “hit” contradicts the two-hit theory for the accelerated carcinogenesis associated with familial cancer syndromes. Here, we show that heterozygous BRCA1 inactivation results in genomic instability in nontumorigenic human breast epithelial cells in vitro and in vivo. Using somatic cell gene targeting, we demonstrated that a heterozygous BRCA1 185delAG mutation confers impaired homology-mediated DNA repair and hypersensitivity to genotoxic stress. Heterozygous mutant BRCA1 cell clones also showed a higher degree of gene copy number loss and loss of heterozygosity in SNP array analyses. In BRCA1 heterozygous clones and nontumorigenic breast epithelial tissues from BRCA mutation carriers, FISH revealed elevated genomic instability when compared with their respective controls. Thus, BRCA1 haploinsufficiency may accelerate hereditary breast carcinogenesis by facilitating additional genetic alterations.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Tamoxifen-stimulated growth of breast cancer due to p21 loss

Abde M. Abukhdeir; Michele I. Vitolo; Pedram Argani; Angelo M. De Marzo; Bedri Karakas; Hiroyuki Konishi; John P. Gustin; Josh Lauring; Joseph P. Garay; Courtney Pendleton; Yuko Konishi; Brian G. Blair; Keith Brenner; Elizabeth Garrett-Mayer; Hetty E. Carraway; Kurtis E. Bachman; Ben Ho Park

Tamoxifen is widely used for the treatment of hormonally responsive breast cancers. However, some resistant breast cancers develop a growth proliferative response to this drug, as evidenced by tumor regression upon its withdrawal. To elucidate the molecular mediators of this paradox, tissue samples from a patient with tamoxifen-stimulated breast cancer were analyzed. These studies revealed that loss of the cyclin-dependent kinase inhibitor p21 was associated with a tamoxifen growth-inducing phenotype. Immortalized human breast epithelial cells with somatic deletion of the p21 gene were then generated and displayed a growth proliferative response to tamoxifen, whereas p21 wild-type cells demonstrated growth inhibition upon tamoxifen exposure. Mutational and biochemical analyses revealed that loss of p21s cyclin-dependent kinase inhibitory property results in hyperphosphorylation of estrogen receptor-α, with subsequent increased gene expression of estrogen receptor-regulated genes. These data reveal a previously uncharacterized molecular mechanism of tamoxifen resistance and have potential clinical implications for the management of tamoxifen-resistant breast cancers.


Cancer Research | 2007

Knock-in of Mutant K-ras in Nontumorigenic Human Epithelial Cells as a New Model for Studying K-ras–Mediated Transformation

Hiroyuki Konishi; Bedri Karakas; Abde M. Abukhdeir; Josh Lauring; John P. Gustin; Joseph P. Garay; Yuko Konishi; Eike Gallmeier; Kurtis E. Bachman; Ben Ho Park

The oncogenic function of mutant ras in mammalian cells has been extensively investigated using multiple human and animal models. These systems include overexpression of exogenous mutant ras transgenes, conditionally expressed knock-in mouse models, and somatic cell knockout of mutant and wild-type ras genes in human cancer cell lines. However, phenotypic discrepancies between knock-in mice and transgenic mutant ras overexpression prompted us to evaluate the consequences of targeted knock-in of an oncogenic K-ras mutation in the nontumorigenic human breast epithelial cell line MCF-10A and hTERT-immortalized human mammary epithelial cells. Our results show several significant differences between mutant K-ras knock-in cells versus their transgene counterparts, including limited phosphorylation of the downstream molecules extracellular signal-regulated kinase and AKT, minor proliferative capacity in the absence of an exogenous growth factor, and the inability to form colonies in semisolid medium. Analysis of 16 cancer cell lines carrying mutant K-ras genes indicated that 50% of cancer cells harbor nonoverexpressed heterozygous K-ras mutations similar to the expression seen in our knock-in cell lines. Thus, this system serves as a new model for elucidating the oncogenic contribution of mutant K-ras as expressed in a large fraction of human cancer cells.


Clinical Cancer Research | 2016

ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients

David Chu; Costanza Paoletti; Christina Gersch; Dustin A. VanDenBerg; Daniel J. Zabransky; Rory L. Cochran; Hong Yuen Wong; Patricia Valda Toro; Justin Cidado; Sarah Croessmann; Bracha Erlanger; Karen Cravero; Kelly Kyker-Snowman; Berry Button; Heather A. Parsons; W. Brian Dalton; Riaz Gillani; Arielle Medford; Kimberly Aung; Nahomi Tokudome; Arul M. Chinnaiyan; Anne F. Schott; Dan R. Robinson; Karen S. Jacks; Josh Lauring; Paula J. Hurley; Daniel F. Hayes; James M. Rae; Ben Ho Park

Purpose: Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer. Experimental Design: We retrospectively obtained plasma samples from eight patients with known ESR1 mutations and three patients with wild-type ESR1 identified by next-generation sequencing (NGS) of biopsied metastatic tissues. Three common ESR1 mutations were queried for using droplet digital PCR (ddPCR). In a prospective cohort, metastatic tissue and plasma were collected contemporaneously from eight ER-positive and four ER-negative patients. Tissue biopsies were sequenced by NGS, and ptDNA ESR1 mutations were analyzed by ddPCR. Results: In the retrospective cohort, all corresponding mutations were detected in ptDNA, with two patients harboring additional ESR1 mutations not present in their metastatic tissues. In the prospective cohort, three ER-positive patients did not have adequate tissue for NGS, and no ESR1 mutations were identified in tissue biopsies from the other nine patients. In contrast, ddPCR detected seven ptDNA ESR1 mutations in 6 of 12 patients (50%). Conclusions: We show that ESR1 mutations can occur at a high frequency and suggest that blood can be used to identify additional mutations not found by sequencing of a single metastatic lesion. Clin Cancer Res; 22(4); 993–9. ©2015 AACR.


Molecular and Cellular Biology | 1999

Distinct Factors Regulate the Murine RAG-2 Promoter in B- and T-Cell Lines

Josh Lauring; Mark S. Schlissel

ABSTRACT The recombination activating genes RAG-1 andRAG-2 are expressed in a lymphoid-cell-specific and developmentally regulated fashion. To understand the transcriptional basis for this regulation, we have cloned and characterized the murineRAG-2 promoter. The promoter was lymphoid cell specific, showing activity in various B- and T-cell lines but little activity in nonlymphoid cells. To our surprise, however, the promoter was regulated differently in B and T cells. Using nuclear extracts from B-cell lines, we found that the B-cell-specific transcription factor BSAP (Pax-5) could bind to a conserved sequence critical for promoter activity. BSAP activated the promoter in transfected cells, and the BSAP site was occupied in a tissue-specific manner in vivo. An overlapping DNA sequence binding to a distinct factor was necessary for promoter activity in T cells. Full promoter activity in T cells was also dependent on a more distal DNA sequence whose disruption had no effect on B-cell activity. The unexpected finding that a B-cell-specific factor regulates the RAG-2 promoter may explain some of the recently observed differences in the regulation of RAGtranscription between B and T cells.


Molecular and Cellular Biology | 2000

c-Myb binds to a sequence in the proximal region of the RAG-2 promoter and is essential for promoter activity in T-lineage cells.

Qianfei Wang; Josh Lauring; Mark S. Schlissel

ABSTRACT The RAG-2 gene encodes a component of the V(D)J recombinase which is essential for the assembly of antigen receptor genes in B and T lymphocytes. Previously, we reported that the transcription factor BSAP (PAX-5) regulates the murine RAG-2 promoter in B-cell lines. A partially overlapping but distinct region of the proximal RAG-2 promoter was also identified as an important element for promoter activity in T cells; however, the responsible factor was unknown. In this report, we present data demonstrating that c-Myb binds to a Myb consensus site within the proximal promoter and is critical for its activity in T-lineage cells. We show that c-Myb can transactivate a RAG-2 promoter-reporter construct in cotransfection assays and that this transactivation depends on the proximal promoter Myb consensus site. By using a chromatin immunoprecipitation (ChIP) strategy, fractionation of chromatin with anti-c-Myb antibody specifically enriched endogenous RAG-2 promoter DNA sequences. DNase I genomic footprinting revealed that the c-Myb site is occupied in a tissue-specific fashion in vivo. Furthermore, an integrated RAG-2 promoter construct with mutations at the c-Myb site was not enriched in the ChIP assay, while a wild-type integrated promoter construct was enriched. Finally, this lack of binding of c-Myb to a chromosomally integrated mutant RAG-2 promoter construct in vivo was associated with a striking decrease in promoter activity. We conclude that c-Myb regulates the RAG-2 promoter in T cells by binding to this consensus c-Myb binding site.

Collaboration


Dive into the Josh Lauring's collaboration.

Top Co-Authors

Avatar

Ben Ho Park

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

John P. Gustin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Zabransky

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hong Yuen Wong

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rory L. Cochran

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sarah Croessmann

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Abde M. Abukhdeir

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge