Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshiawa Paulk is active.

Publication


Featured researches published by Joshiawa Paulk.


Science | 2015

Phthalimide conjugation as a strategy for in vivo target protein degradation

Georg E. Winter; Dennis L. Buckley; Joshiawa Paulk; Justin M. Roberts; Amanda Souza; Sirano Dhe-Paganon; James E. Bradner

A degrading game plan for cancer therapy Certain classes of proteins that contribute to cancer development are challenging to target therapeutically. Winter et al. devised a chemical strategy that, in principle, permits the selective degradation of any protein of interest. The strategy involves chemically attaching a ligand known to bind the desired protein to another molecule that hijacks an enzyme whose function is to direct proteins to the cells protein degradation machinery. In a proof-of-concept study, they demonstrated selective degradation of a transcriptional coactivator called bromodomain-containing protein 4 and delayed the progression of leukemia in mice. Science, this issue p. 1376 A chemical strategy that leads to selective destruction of proteins of interest may be a valuable tool for drug development. The development of effective pharmacological inhibitors of multidomain scaffold proteins, notably transcription factors, is a particularly challenging problem. In part, this is because many small-molecule antagonists disrupt the activity of only one domain in the target protein. We devised a chemical strategy that promotes ligand-dependent target protein degradation using as an example the transcriptional coactivator BRD4, a protein critical for cancer cell growth and survival. We appended a competitive antagonist of BET bromodomains to a phthalimide moiety to hijack the cereblon E3 ubiquitin ligase complex. The resultant compound, dBET1, induced highly selective cereblon-dependent BET protein degradation in vitro and in vivo and delayed leukemia progression in mice. A second series of probes resulted in selective degradation of the cytosolic protein FKBP12. This chemical strategy for controlling target protein stability may have implications for therapeutically targeting previously intractable proteins.


Science | 2016

MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells

Gregory V. Kryukov; Frederick H. Wilson; Jason Ruth; Joshiawa Paulk; Aviad Tsherniak; Sara Marlow; Francisca Vazquez; Barbara A. Weir; Mark E. Fitzgerald; Minoru Tanaka; Craig M. Bielski; Justin Scott; Courtney Dennis; Glenn S. Cowley; Jesse S. Boehm; David E. Root; Todd R. Golub; Clary B. Clish; James E. Bradner; William C. Hahn; Levi A. Garraway

Tumors put in a vulnerable position Cancer cells often display alterations in metabolism that help fuel their growth. Such metabolic “rewiring” may also work against the cancer cells, however, by creating new vulnerabilities that can be exploited therapeutically. A variety of human tumors show changes in methionine metabolism caused by loss of the gene coding for 5-methylthioadenosine phosphorylase (MTAP). Mavrakis et al. and Kryukov et al. found that the loss of MTAP renders cancer cell lines sensitive to growth inhibition by compounds that suppress the activity of a specific arginine methyltransferase called PRMT5. Conceivably, drugs that inhibit PRMT5 activity could be developed into a tailored therapy for MTAP-deficient tumors. Science, this issue pp. 1208 and 1214 Tumors cope with a genomic change by rewiring their metabolism, but this makes them more susceptible to certain drugs. The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A. We observed increased intracellular concentrations of methylthioadenosine (MTA, the metabolite cleaved by MTAP) in cells harboring MTAP deletions. Furthermore, MTA specifically inhibited PRMT5 enzymatic activity. Administration of either MTA or a small-molecule PRMT5 inhibitor showed a modest preferential impairment of cell viability for MTAP-null cancer cell lines compared with isogenic MTAP-expressing counterparts. Together, our findings reveal PRMT5 as a potential vulnerability across multiple cancer lineages augmented by a common “passenger” genomic alteration.


ACS Chemical Biology | 2012

A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma.

Yuan Yuan; Qiu Wang; Joshiawa Paulk; Stefan Kubicek; Melissa M. Kemp; Drew J. Adams; Alykhan F. Shamji; Bridget K. Wagner; Stuart L. Schreiber

Post-translational modifications of histones alter chromatin structure and play key roles in gene expression and specification of cell states. Small molecules that target chromatin-modifying enzymes selectively are useful as probes and have promise as therapeutics, although very few are currently available. G9a (also named euchromatin histone methyltransferase 2 (EHMT2)) catalyzes methylation of lysine 9 on histone H3 (H3K9), a modification linked to aberrant silencing of tumor-suppressor genes, among others. Here, we report the discovery of a novel histone methyltransferase inhibitor, BRD4770. This compound reduced cellular levels of di- and trimethylated H3K9 without inducing apoptosis, induced senescence, and inhibited both anchorage-dependent and -independent proliferation in the pancreatic cancer cell line PANC-1. ATM-pathway activation, caused by either genetic or small-molecule inhibition of G9a, may mediate BRD4770-induced cell senescence. BRD4770 may be a useful tool to study G9a and its role in senescence and cancer cell biology.


Science | 2015

DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation.

Georg E. Winter; Dennis L. Buckley; Joshiawa Paulk; Justin M. Roberts; Amanda Souza; Sirano Dhe-Paganon; James E. Bradner

A degrading game plan for cancer therapy Certain classes of proteins that contribute to cancer development are challenging to target therapeutically. Winter et al. devised a chemical strategy that, in principle, permits the selective degradation of any protein of interest. The strategy involves chemically attaching a ligand known to bind the desired protein to another molecule that hijacks an enzyme whose function is to direct proteins to the cells protein degradation machinery. In a proof-of-concept study, they demonstrated selective degradation of a transcriptional coactivator called bromodomain-containing protein 4 and delayed the progression of leukemia in mice. Science, this issue p. 1376 A chemical strategy that leads to selective destruction of proteins of interest may be a valuable tool for drug development. The development of effective pharmacological inhibitors of multidomain scaffold proteins, notably transcription factors, is a particularly challenging problem. In part, this is because many small-molecule antagonists disrupt the activity of only one domain in the target protein. We devised a chemical strategy that promotes ligand-dependent target protein degradation using as an example the transcriptional coactivator BRD4, a protein critical for cancer cell growth and survival. We appended a competitive antagonist of BET bromodomains to a phthalimide moiety to hijack the cereblon E3 ubiquitin ligase complex. The resultant compound, dBET1, induced highly selective cereblon-dependent BET protein degradation in vitro and in vivo and delayed leukemia progression in mice. A second series of probes resulted in selective degradation of the cytosolic protein FKBP12. This chemical strategy for controlling target protein stability may have implications for therapeutically targeting previously intractable proteins.


Nature Medicine | 2016

An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation.

George P. Souroullas; William R. Jeck; Joel S. Parker; Jeremy M. Simon; Jie Yu Liu; Joshiawa Paulk; Jessie Xiong; Kelly S. Clark; Yuri Fedoriw; Jun Qi; Christin E. Burd; James E. Bradner; Norman E. Sharpless

B cell lymphoma and melanoma harbor recurrent mutations in the gene encoding the EZH2 histone methyltransferase (EZH2), but the carcinogenic role of these mutations is unclear. Here we describe a mouse model in which the most common somatic Ezh2 gain-of-function mutation (EZH2Y646F in human; Ezh2Y641F in mouse) is conditionally expressed. Expression of Ezh2Y641F in mouse B cells or melanocytes caused high-penetrance lymphoma or melanoma, respectively. Overexpression of the anti-apoptotic protein Bcl2, but not the oncoprotein Myc, or loss of the tumor suppressor protein p53 (encoded by Trp53 in mice) further accelerated lymphoma progression. Expression of the mutant Braf but not the mutant Nras oncoprotein further accelerated melanoma progression. Although expression of Ezh2Y641F globally increased the abundance of trimethylated Lys27 of histone H3 (H3K27me3), it also caused a widespread redistribution of this repressive mark, including a loss of H3K27me3 that was associated with increased transcription at many loci. These results suggest that Ezh2Y641F induces lymphoma and melanoma through a vast reorganization of chromatin structure, inducing both repression and activation of polycomb-regulated loci.B-cell lymphoma and melanoma harbor recurrent mutations in the gene encoding the EZH2 histone methyltransferase, but the carcinogenic role of these mutations is unclear. Here we describe a mouse model in which the most common somatic EZH2 gain-of-function mutation (Y646F in human, Y641F in the mouse) can be conditionally expressed. Expression of Ezh2Y641F in mouse B-cells or melanocytes caused high-penetrance lymphoma or melanoma, respectively. Bcl2 overexpression or p53 loss, but not c-Myc overexpression, further accelerated lymphoma progression, and expression of mutant B-Raf but not mutant N-Ras further accelerated melanoma progression. Although expression of Ezh2Y641F increased abundance of global H3K27 trimethylation (H3K27me3), it also caused a widespread redistribution of this repressive mark, including a loss of H3K27me3 associated with increased transcription at many loci. These results suggest that Ezh2Y641F induces lymphoma and melanoma through a vast reorganization of chromatin structure inducing both repression and activation of polycomb-regulated loci.


Nature | 2017

Transcription control by the ENL YEATS domain in acute leukaemia

Michael A. Erb; Thomas G. Scott; Bin E. Li; Huafeng Xie; Joshiawa Paulk; Hyuk-Soo Seo; Amanda Souza; Justin M. Roberts; Shiva Dastjerdi; Dennis L. Buckley; Neville E. Sanjana; Ophir Shalem; Behnam Nabet; Rhamy Zeid; Nana K. Offei-Addo; Sirano Dhe-Paganon; Feng Zhang; Stuart H. Orkin; Georg E. Winter; James E. Bradner

Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR–Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.


Cancer Discovery | 2016

Oncogenic deregulation of EZH2 as an opportunity for targeted therapy in lung cancer

Hailei Zhang; Jun Qi; Jaime Reyes; Liren Li; Prakash Rao; Fugen Li; Charles Y. Lin; Jennifer A. Perry; Matthew A. Lawlor; Alexander J. Federation; De Raedt T; Yvonne Y. Li; Yin Liu; Melissa Duarte; Yunyu Zhang; Grit S. Herter-Sprie; Eiki Kikuchi; Julian Carretero; Charles M. Perou; Jakob B. Reibel; Joshiawa Paulk; Roderick T. Bronson; Hideo Watanabe; Christine Fillmore Brainson; Carla F. Kim; Peter S. Hammerman; Myles Brown; Karen Cichowski; Henry W. Long; James E. Bradner

UNLABELLED As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non-small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways, leading to epigenetic transformation independent of canonical growth factor pathway activation. As such, tumors feature a transcriptional program distinct from KRAS- and EGFR-mutant mouse lung cancers, but shared with human lung adenocarcinomas exhibiting high EZH2 expression. To target EZH2-dependent cancers, we developed a potent open-source EZH2 inhibitor, JQEZ5, that promoted the regression of EZH2-driven tumors in vivo, confirming oncogenic addiction to EZH2 in established tumors and providing the rationale for epigenetic therapy in a subset of lung cancer. SIGNIFICANCE EZH2 overexpression induces murine lung cancers that are similar to human NSCLC with high EZH2 expression and low levels of phosphorylated AKT and ERK, implicating biomarkers for EZH2 inhibitor sensitivity. Our EZH2 inhibitor, JQEZ5, promotes regression of these tumors, revealing a potential role for anti-EZH2 therapy in lung cancer. Cancer Discov; 6(9); 1006-21. ©2016 AACR.See related commentary by Frankel et al., p. 949This article is highlighted in the In This Issue feature, p. 932.


Nature Chemical Biology | 2016

Design and characterization of bivalent BET inhibitors

Minoru Tanaka; Justin M. Roberts; Hyuk-Soo Seo; Amanda Souza; Joshiawa Paulk; Thomas G. Scott; Stephen L. DeAngelo; Sirano Dhe-Paganon; James E. Bradner

Cellular signaling is often propagated by multivalent interactions. Multivalency creates avidity, allowing stable biophysical recognition. Multivalency is an attractive strategy for achieving potent binding to protein targets, as the affinity of bivalent ligands is often greater than the sum of monovalent affinities. The BET family of transcriptional coactivators features tandem bromodomains, through which BET proteins naturally bind acetylated histones and transcription factors. All reported BRD4 antagonists bind in a monovalent fashion. Here, we report the first bivalent BET bromodomain inhibitor, MT1 that has unprecedented potency. Biophysical and biochemical studies suggest MT1 is an intramolecular bivalent BRD4 binder that is over 100-fold more potent in cellular assays compared to the corresponding monovalent antagonist, JQ1. MT1 significantly delayed leukemia progression in mice (Mus musculus) compared to JQ1. These data qualify a powerful chemical probe for BET bromodomains and extensible rationale for further development of multidomain epigenetic reader protein inhibitors.


Angewandte Chemie | 2017

Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands

David Remillard; Dennis L. Buckley; Joshiawa Paulk; Gerard L. Brien; Matthew Sonnett; Hyuk-Soo Seo; Shiva Dastjerdi; Martin Wühr; Sirano Dhe-Paganon; Scott A. Armstrong; James E. Bradner

The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9 function beyond acetyl-lysine recognition. We have therefore created the first BRD9-directed chemical degraders, through iterative design and testing of heterobifunctional ligands that bridge the BRD9 bromodomain and the cereblon E3 ubiquitin ligase complex. Degraders of BRD9 exhibit markedly enhanced potency compared to parental ligands (10- to 100-fold). Parallel study of degraders with divergent BRD9-binding chemotypes in models of acute myeloid leukemia resolves bromodomain polypharmacology in this emerging drug class. Together, these findings reveal the tractability of non-BET bromodomain containing proteins to chemical degradation, and highlight lead compound dBRD9 as a tool for the study of BRD9.


eLife | 2017

MELK is not necessary for the proliferation of basal-like breast cancer cells

Hai-Tsang Huang; Hyuk-Soo Seo; Tinghu Zhang; Yubao Wang; Baishan Jiang; Qing Li; Dennis L. Buckley; Behnam Nabet; Justin M. Roberts; Joshiawa Paulk; Shiva Dastjerdi; Georg E. Winter; Hilary McLauchlan; Jennifer Moran; James E. Bradner; Michael J. Eck; Sirano Dhe-Paganon; Jean Zhao; Nathanael S. Gray

Thorough preclinical target validation is essential for the success of drug discovery efforts. In this study, we combined chemical and genetic perturbants, including the development of a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/Cas9-mediated MELK knockout, a novel chemical-induced protein degradation strategy, RNA interference and CRISPR interference to validate MELK as a therapeutic target in basal-like breast cancers (BBC). In common culture conditions, we found that small molecule inhibition, genetic deletion, or acute depletion of MELK did not significantly affect cellular growth. This discrepancy to previous findings illuminated selectivity issues of the widely used MELK inhibitor OTSSP167, and potential off-target effects of MELK-targeting short hairpins. The different genetic and chemical tools developed here allow for the identification and validation of any causal roles MELK may play in cancer biology, which will be required to guide future MELK drug discovery efforts. Furthermore, our study provides a general framework for preclinical target validation.

Collaboration


Dive into the Joshiawa Paulk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge