Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua A. Jackman is active.

Publication


Featured researches published by Joshua A. Jackman.


Materials | 2012

Biotechnology Applications of Tethered Lipid Bilayer Membranes

Joshua A. Jackman; Wolfgang Knoll; Nam-Joon Cho

The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are based on the immobilization of a planar lipid bilayer on a solid support that enables characterization by a wide range of surface-sensitive analytical techniques. Moreover, as the result of molecular engineering inspired by biology, tethered bilayers are increasingly able to mimic fundamental properties of natural cell membranes, including fluidity, electrical sealing and hosting transmembrane proteins. At the same time, new methods have been employed to improve the durability of tethered bilayers, with shelf-lives now reaching the order of weeks and months. Taken together, the capabilities of tethered lipid bilayers have opened the door to biotechnology applications in healthcare, environmental monitoring and energy storage. In this review, several examples of such applications are presented. Beyond the particulars of each example, the focus of this review is on the emerging design and characterization strategies that made these applications possible. By drawing connections between these strategies and promising research results, future opportunities for tethered lipid bilayers within the biotechnology field are discussed.


Langmuir | 2011

pH-Driven Assembly of Various Supported Lipid Platforms: A Comparative Study on Silicon Oxide and Titanium Oxide

Nam-Joon Cho; Joshua A. Jackman; Michael Liu; Curtis W. Frank

Supported lipid platforms are versatile cell membrane mimics whose structural properties can be tailored to suit the application of interest. By identifying parameters that control the self-assembly of these platforms, there is potential to develop advanced biomimetic systems that overcome the surface specificity of lipid vesicle interactions under physiological conditions. In this work, we investigated the adsorption kinetics of vesicles onto silicon and titanium oxides as a function of pH. On each substrate, a planar bilayer and a layer of intact vesicles could be self-assembled in a pH-dependent manner, demonstrating the role of surface charge density in the self-assembly process. Under acidic pH conditions where both zwitterionic lipid vesicles and the oxide films possess near-neutral electric surface charges, vesicle rupture could occur, demonstrating that the process is driven by nonelectrostatic interactions. However, we observed that the initial rupturing process is insufficient for propagating bilayer formation. The role of electrostatic interactions for propagating bilayer formation differs for the two substrates; electrostatic attraction between vesicles and the substrate is necessary for complete bilayer formation on titanium oxide but is not necessary on silicon oxide. Conversely, in the high pH regime, repulsive electrostatic interactions can result in the irreversible adsorption of intact vesicles on silicon oxide and even a reversibly adsorbed vesicle layer on titanium oxide. Together, the results show that pH is an effective tool to modulate vesicle-substrate interactions in order to create various self-assembled lipid platforms on hydrophilic substrates.


Langmuir | 2013

Influence of Osmotic Pressure on Adhesion of Lipid Vesicles to Solid Supports

Joshua A. Jackman; Jae-Hyeok Choi; Vladimir P. Zhdanov; Nam-Joon Cho

The adhesion of lipid vesicles to solid supports represents an important step in the molecular self-assembly of model membrane platforms. A wide range of experimental parameters are involved in controlling this process, including substrate material and topology, lipid composition, vesicle size, solution pH, ionic strength, and osmotic pressure. At present, it is not well understood how the magnitude and direction of the osmotic pressure exerted on a vesicle influence the corresponding adsorption kinetics. In this work, using quartz crystal microbalance with dissipation (QCM-D) monitoring, we have experimentally studied the role of osmotic pressure in the adsorption of zwitterionic vesicles onto silicon oxide. The osmotic pressure was induced by changing the ionic strength of the solvent across an appreciably wider range (from 25 to 1000 mM NaCl outside of the vesicle, and 125 mM NaCl inside of the vesicle, unless otherwise noted) compared to that used in earlier works. Our key finding is demonstration that, by changing osmotic pressure, all three generic types of the kinetics of vesicle adsorption and rupture can be observed in one system, including (i) adsorption of intact vesicles, (ii) adsorption and rupture after reaching a critical vesicle coverage, and (iii) rupture just after adsorption. Furthermore, theoretical analysis of pressure-induced deformation of adsorbed vesicles and a DLVO-type analysis of the vesicle-substrate interaction qualitatively support our observations. Taken together, the findings in this work demonstrate that osmotic pressure can either promote or impede the rupture of adsorbed vesicles on silicon oxide, and offer experimental evidence to support adhesion energy-based models that describe the adsorption and spontaneous rupture of vesicles on solid supports.


ACS Applied Materials & Interfaces | 2015

Self-Assembly Formation of Lipid Bilayer Coatings on Bare Aluminum Oxide: Overcoming the Force of Interfacial Water

Joshua A. Jackman; Seyed R. Tabaei; Zhilei Zhao; Saziye Yorulmaz; Nam-Joon Cho

Widely used in catalysis and biosensing applications, aluminum oxide has become popular for surface functionalization with biological macromolecules, including lipid bilayer coatings. However, it is difficult to form supported lipid bilayers on aluminum oxide, and current methods require covalent surface modification, which masks the interfacial properties of aluminum oxide, and/or complex fabrication techniques with specific conditions. Herein, we addressed this issue by identifying simple and robust strategies to form fluidic lipid bilayers on aluminum oxide. The fabrication of a single lipid bilayer coating was achieved by two methods, vesicle fusion under acidic conditions and solvent-assisted lipid bilayer (SALB) formation under near-physiological pH conditions. Importantly, quartz crystal microbalance with dissipation (QCM-D) monitoring measurements determined that the hydration layer of a supported lipid bilayer on aluminum oxide is appreciably thicker than that of a bilayer on silicon oxide. Fluorescence recovery after photobleaching (FRAP) analysis indicated that the diffusion coefficient of lateral lipid mobility was up to 3-fold greater on silicon oxide than on aluminum oxide. In spite of this hydrodynamic coupling, the diffusion coefficient on aluminum oxide, but not silicon oxide, was sensitive to the ionic strength condition. Extended-DLVO model calculations estimated the thermodynamics of lipid-substrate interactions on aluminum oxide and silicon oxide, and predict that the range of the repulsive hydration force is greater on aluminum oxide, which in turn leads to an increased equilibrium separation distance. Hence, while a strong hydration force likely contributes to the difficulty of bilayer fabrication on aluminum oxide, it also confers advantages by stabilizing lipid bilayers with thicker hydration layers due to confined interfacial water. Such knowledge provides the basis for improved surface functionalization strategies on aluminum oxide, underscoring the practical importance of surface hydration.


Science Advances | 2016

High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles

Amol Ashok Pawar; Gabriel Saada; Ido Cooperstein; Liraz Larush; Joshua A. Jackman; Seyed R. Tabaei; Nam-Joon Cho; Shlomo Magdassi

Photoinitiator nanoparticles enable rapid 3D printing of hydrogels from waterborne systems using digital light printers. In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)–visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode–based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.


Langmuir | 2014

Contribution of the hydration force to vesicle adhesion on titanium oxide.

Joshua A. Jackman; Goh Haw Zan; Zhilei Zhao; Nam-Joon Cho

Titanium oxide is a biocompatible material that supports vesicle adhesion. Depending on experimental parameters, adsorbed vesicles remain intact or rupture spontaneously. Vesicle rupture has been attributed to electrostatic attraction between vesicles and titanium oxide, although the relative contribution of various interfacial forces remains to be clarified. Herein, we investigated the influence of vesicle surface charge on vesicle adsorption onto titanium oxide and observed that electrostatic attraction is insufficient for vesicle rupture. Following this line of evidence, a continuum model based on the DLVO forces and a non-DLVO hydration force was applied to investigate the role of different interfacial forces in modulating the lipid-substrate interaction. Within an experimentally significant range of conditions, the model shows that the magnitude of the repulsive hydration force strongly influences the behavior of adsorbed vesicles, thereby supporting that the hydration force makes a strong contribution to the fate of adsorbed vesicles on titanium oxide. The findings are consistent with literature reports concerning phospholipid assemblies on solid supports and nanoparticles and underscore the importance of the hydration force in influencing the behavior of phospholipid films on hydrophilic surfaces.


Journal of Physical Chemistry B | 2013

Rupture of Lipid Vesicles by a Broad-Spectrum Antiviral Peptide: Influence of Vesicle Size

Joshua A. Jackman; Goh Haw Zan; Vladimir P. Zhdanov; Nam-Joon Cho

An amphipathic α-helical (AH) peptide was recently discovered that can rupture the lipid envelope of many viruses including HIV, hepatitis C, dengue, and herpes simplex. Despite its broad-spectrum activity, the AH peptide specifically targets small viruses only and does not affect large viruses. Indirect observations of virus size-specific targeting have been confirmed in a model system comprised of intact lipid vesicles on a gold substrate. Depending on vesicle size, AH peptide can promote vesicle rupture, but the mechanism by which vesicle size influences the rupture process remains to be elucidated. Herein, using the dynamic light scattering and quartz crystal microbalance with dissipation techniques, we have combined experiment and theory to understand the effects of vesicle size on the interaction between the AH peptide and vesicles. We identified that the AH peptide-binding interaction can induce a structural rearrangement of the vesicles lipid bilayer, which occurs independently of vesicle size. Kinetic analysis also revealed that AH peptide-binding occurs cooperatively for small vesicles only. Binding cooperativity is consistent with pore formation leading to vesicle rupture. By contrast, for large vesicles, AH peptide-binding is noncooperative and does not cause vesicle rupture, suggesting that the binding interaction occurs via a different mechanism. Compared to previous estimates that AH peptide is most effective against viruses with a diameter of less than 70 nm, our evidence validates that AH peptide may target a wider size range of enveloped viruses up to 160 nm in diameter. Taken together, our findings provide a quantitative rationale to understand the targeting specificity of AH peptide as a broad-spectrum antiviral drug candidate.


Langmuir | 2014

Vesicle Adhesion and Rupture on Silicon Oxide: Influence of Freeze–Thaw Pretreatment

Joshua A. Jackman; Zhilei Zhao; Vladimir P. Zhdanov; Curtis W. Frank; Nam-Joon Cho

We have investigated the effect of freeze-thaw (FT) pretreatment on the adhesion and rupture of extruded vesicles over a wide range of vesicle sizes. To characterize the size distributions of vesicles obtained with and without FT pretreatment, dynamic light scattering (DLS) experiments were performed. The interaction between extruded vesicles and a silicon oxide substrate was investigated by quartz crystal microbalance with dissipation (QCM-D) monitoring, with a focus on comparative analysis of similar-sized vesicles with and without FT pretreatment. Under this condition, there was a smaller mass load at the critical coverage associated with untreated vesicles, as compared to vesicles which had been subjected to FT pretreatment. In addition, the rupture of treated vesicles generally resulted in formation of a complete planar bilayer, while the adlayer was more heterogeneous when employing untreated vesicles. Combined with kinetic analysis and extended-DLVO model calculations, the experimental evidence suggests that the differences arising from FT pretreatment are due to characteristics of the vesicle size distribution and also multilamellarity of an appreciable fraction of untreated vesicles. Taken together, our findings clarify the influence of FT pretreatment on model membrane fabrication on solid supports.


Langmuir | 2014

Nanoplasmonic biosensing for soft matter adsorption: kinetics of lipid vesicle attachment and shape deformation.

Joshua A. Jackman; Vladimir P. Zhdanov; Nam-Joon Cho

An indirect nanoplasmonic sensing platform is reported for investigating the kinetics of attachment and shape deformation associated with lipid vesicle adsorption onto a titanium oxide-coated substrate. The localized surface plasmon resonance (LSPR) originates from embedded gold nanodisks and is highly sensitive to the local lipid environment. To interpret the corresponding results, we have extended treatments of diffusion-limited adsorption kinetics and adsorbate-related LSPR physics, identified the expected scaling laws for the LSPR-tracked kinetics measured at different lipid concentrations and/or nanometer-scale vesicle sizes in the case when vesicle deformation is negligible, and scrutinized experimental deviations accordingly. After adsorption, the smallest 58 nm diameter vesicles were found to maintain shape on the time scale of adsorption at high lipid concentrations in solution, and shape deformation became more appreciable at lower lipid concentrations. Higher saturation coverage was observed with increasing lipid concentration, which is attributed to the difference in relative time scales of vesicle attachment and deformation. For larger vesicles between 80 and 160 nm diameter, deviations associated with their shape deformation and correlations with the location of gold nanodisks became more apparent at moderate and high coverages. Taken together, the results obtained support that the quantitative measurement capabilities of nanoplasmonic biosensing should be considered for applications demanding highly surface-sensitive characterization of soft matter adsorption and related phenomena at liquid-solid interfaces.


Langmuir | 2015

Contribution of Temperature to Deformation of Adsorbed Vesicles Studied by Nanoplasmonic Biosensing

Eunkyul Oh; Joshua A. Jackman; Saziye Yorulmaz; Vladimir P. Zhdanov; Haiwon Lee; Nam-Joon Cho

With increasing temperature, biological macromolecules and nanometer-sized aggregates typically undergo complex and poorly understood reconfigurations, especially in the adsorbed state. Herein, we demonstrate the strong potential of using localized surface plasmon resonance (LSPR) sensors to address challenging questions related to this topic. By employing an LSPR-based gold nanodisk array platform, we have studied the adsorption of sub-100-nm diameter 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles on titanium oxide at two temperatures, 23 and 50 °C. Inside this temperature range, DPPC lipid vesicles undergo the gel-to-fluid phase transition accompanied by membrane area expansion, while DOPC lipid vesicles remain in the fluid-phase state. To interpret the corresponding measurement results, we have derived general equations describing the effect of deformation of adsorbed vesicles on the LSPR signal. At the two temperatures, the shape of adsorbed DPPC lipid vesicles on titanium oxide remains nearly equivalent, while DOPC lipid vesicles become less deformed at higher temperature. Adsorption and rupture of DPPC lipid vesicles on silicon oxide were also studied for comparison. In contrast to the results obtained on titanium oxide, adsorbed vesicles on silicon oxide become more deformed at higher temperature. Collectively, the findings demonstrate that increasing temperature may ultimately promote, hinder, or have negligible effect on the deformation of adsorbed vesicles. The physics behind these observations is discussed, and helps to clarify the interplay of various, often hidden, factors involved in adsorption of biological macromolecules at interfaces.

Collaboration


Dive into the Joshua A. Jackman's collaboration.

Top Co-Authors

Avatar

Nam-Joon Cho

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Abdul Rahim Ferhan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Bo Kyeong Yoon

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Seyed R. Tabaei

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jae Hyeon Park

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Chul Kim

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Seong-Oh Kim

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Michael G. Potroz

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge