Joshua A. Slater
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua A. Slater.
Physical Review Letters | 2012
Erhan Saglamyurek; Neil Sinclair; Jeongwan Jin; Joshua A. Slater; Daniel Oblak; Felix Bussieres; Mathew George; Raimund Ricken; W. Sohler; Wolfgang Tittel
We demonstrate the conditional detection of time-bin qubits after storage in and retrieval from a photon-echo-based waveguide quantum memory. Each qubit is encoded into one member of a photon pair produced via spontaneous parametric down-conversion, and the conditioning is achieved by the detection of the other member of the pair. By performing projection measurements with the stored and retrieved photons onto different bases, we obtain an average storage fidelity of 0.885±0.020, which exceeds the relevant classical bounds and shows the suitability of our integrated light-matter interface for future applications of quantum information processing.
Physical Review Letters | 2012
Terence E. Stuart; Joshua A. Slater; Roger Colbeck; Renato Renner; Wolfgang Tittel
According to quantum theory, the outcomes of future measurements cannot (in general) be predicted with certainty. In some cases, even with a complete physical description of the system to be measured and the measurement apparatus, the outcomes of certain measurements are completely random. This raises the question, originating in the paper by Einstein, Podolsky and Rosen, of whether quantum mechanics is the optimal way to predict measurement outcomes. Established arguments and experimental tests exclude a few specific alternative models. Here, we provide a complete answer to the above question, refuting any alternative theory with significantly more predictive power than quantum theory. More precisely, we perform various measurements on distant entangled photons, and, under the assumption that these measurements are chosen freely, we give an upper bound on how well any alternative theory could predict their outcomes. In particular, in the case where quantum mechanics predicts two equally likely outcomes, our results are incompatible with any theory in which the probability of a prediction is increased by more than ~0.19. Hence, we can immediately refute any already considered or yet-to-be-proposed alternative model with more predictive power than this.
Optics Letters | 2010
Joshua A. Slater; Jean-Simon Corbeil; Stéphane Virally; Felix Bussieres; Alexandre Kudlinski; Géraud Bouwmans; Suzanne Lacroix; Nicolas Godbout; Wolfgang Tittel
We demonstrate a source of photon pairs with widely separated wavelengths, 810 and 1548 nm, generated through spontaneous four-wave mixing in a microstructured fiber. The second-order autocorrelation function g((2))(0) was measured to confirm the nonclassical nature of a heralded single-photon source constructed from the fiber. The microstructured fiber presented herein has the interesting property of generating photon pairs with wavelengths suitable for a quantum repeater able to link free-space channels with fiber channels, as well as for a high-quality telecommunication wavelength heralded single photon source. It also has the advantage of potentially low-loss coupling into standard optical fiber. These reasons make this photon pair source particularly interesting for long-distance quantum communication.
New Journal of Physics | 2014
Erhan Saglamyurek; Neil Sinclair; Joshua A. Slater; Khabat Heshami; Daniel Oblak; Wolfgang Tittel
Faithful storage and coherent manipulation of quantum optical pulses are key for long distance quantum communications and quantum computing. Combining these functions in a light?matter interface that can be integrated on-chip with other photonic quantum technologies, e.g. sources of entangled photons, is an important step towards these applications. To date there have only been a few demonstrations of coherent pulse manipulation utilizing optical storage devices compatible with quantum states, and that only in atomic gas media (making integration difficult) and with limited capabilities. Here we describe how a broadband waveguide quantum memory based on the atomic frequency comb (AFC) protocol can be used as a programmable processor for essentially arbitrary spectral and temporal manipulations of individual quantum optical pulses. Using weak coherent optical pulses at the few photon level, we experimentally demonstrate sequencing, time-to-frequency multiplexing and demultiplexing, splitting, interfering, temporal and spectral filtering, compressing and stretching as well as selective delaying. Our integrated light?matter interface offers high-rate, robust and easily configurable manipulation of quantum optical pulses and brings fully practical optical quantum devices one step closer to reality. Furthermore, as the AFC protocol is suitable for storage of intense light pulses, our processor may also find applications in classical communications.
Nature Communications | 2011
Guido Berlin; Gilles Brassard; Felix Bussieres; Nicolas Godbout; Joshua A. Slater; Wolfgang Tittel
Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 Canada Laboratoire des fibres optiques, Département de génie physique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, H3C 3A7 Canada Institute for Quantum Information Science and Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 CanadaCoin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.
Journal of Modern Optics | 2015
Raju Valivarthi; Itzel Lucio-Martinez; Philip Chan; Allison Rubenok; Caleb John; Daniel Korchinski; Cooper Duffin; Francesco Marsili; Varun B. Verma; Mathew D. Shaw; Jeffrey A. Stern; Sae Woo Nam; Daniel Oblak; Qiang Zhou; Joshua A. Slater; Wolfgang Tittel
We assess the overall performance of our quantum key distribution (QKD) system implementing the measurement-device-independent (MDI) protocol using components with varying capabilities such as different single-photon detectors and qubit preparation hardware. We experimentally show that superconducting nanowire single-photon detectors allow QKD over a channel featuring 60 dB loss, and QKD with more than 600 bits of secret key per second (not considering finite key effects) over a 16 dB loss channel. This corresponds to 300 and 80 km of standard telecommunication fiber, respectively. We also demonstrate that the integration of our QKD system into FPGA-based hardware (instead of state-of-the-art arbitrary waveform generators) does not impact on its performance. Our investigation allows us to acquire an improved understanding of the trade-offs between complexity, cost and system performance, which is required for future customization of MDI-QKD. Given that our system can be operated outside the laboratory over deployed fiber, we conclude that MDI-QKD is a promising approach to information-theoretic secure key distribution.
Physical Review A | 2015
Saikat Guha; Hari Krovi; Christopher A. Fuchs; Zachary Dutton; Joshua A. Slater; Christoph Simon; Wolfgang Tittel
We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multi-mode quantum memories and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss and noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle non-idealities, that this scheme achieves a secret key rate that surpasses the TGW bound---a recently-found fundamental limit to the rate-vs.-loss scaling achievable by any QKD protocol over a direct optical link---thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared states fidelity and the achievable entanglement distillation rate, as a function of the number of repeater nodes, total range, and various loss and noise parameters of the system. We extend our theoretical analysis to encompass sources with non-zero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols, and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.
Optics Express | 2014
Philip Chan; Joshua A. Slater; Itzel Lucio-Martinez; Allison Rubenok; Wolfgang Tittel
We present a detailed description of a widely applicable mathematical model for quantum key distribution (QKD) systems implementing the measurement-device-independent (MDI) protocol. The model is tested by comparing its predictions with data taken using a proof-of-principle, time-bin qubit-based QKD system in a secure laboratory environment (i.e. in a setting in which eavesdropping can be excluded). The good agreement between the predictions and the experimental data allows the model to be used to optimize mean photon numbers per attenuated laser pulse, which are used to encode quantum bits. This in turn allows optimization of secret key rates of existing MDI-QKD systems, identification of rate-limiting components, and projection of future performance. In addition, we also performed measurements over deployed fiber, showing that our systems performance is not affected by environment-induced perturbations.
Nature Communications | 2013
Jeongwan Jin; Joshua A. Slater; Erhan Saglamyurek; Neil Sinclair; Mathew George; Raimund Ricken; Daniel Oblak; W. Sohler; Wolfgang Tittel
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Physical Review A | 2010
Felix Bussieres; Joshua A. Slater; Jeongwan Jin; Nicolas Godbout; W. Tittel
We experimentally demonstrate that the nonlocal nature of time-bin entangled photonic qubits persists when one or two qubits of the pair are converted to polarization qubits. This is possible by implementing a universal time-bin qubit analyzer (UTBA), which allows the analysis of time-bin qubits in any basis. We reveal the nonlocal nature of the emitted light by violating the Clauser-Horne-Shimony-Holt inequality with measurement bases exploring all the dimensions of the Bloch sphere. Moreover, we conduct experiments where one qubit is transmitted over a 12.4 km underground fiber link and demonstrate the suitability of our scheme for use in a real-world setting. The resulting entanglement can also be interpreted as hybrid entanglement between different types of degrees of freedom of two physical systems, which could prove useful in large-scale, heterogeneous quantum networks. This work opens possibilities for testing nonlocality and for implementing new quantum communication protocols with time-bin entanglement.