Joshua B. Kelley
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua B. Kelley.
BMC Cell Biology | 2010
Joshua B. Kelley; Ashley M Talley; Adam Spencer; Daniel Gioeli; Bryce M. Paschal
BackgroundClassical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans.ResultsWe sequenced and characterized a seventh member of the importin α family of transport factors, karyopherin α 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin β (IBB) is divergent, and shows stronger binding to importin β than the IBB domains from of other importin α family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic.ConclusionKPNA7 is a novel importin α family member in humans that belongs to the importin α2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin α family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.
Molecular and Cellular Biology | 2011
Joshua B. Kelley; Sutirtha Datta; Chelsi J. Snow; Mandovi Chatterjee; Li Ni; Adam Spencer; Chun Song Yang; Caelin Cubeñas-Potts; Michael J. Matunis; Bryce M. Paschal
ABSTRACT The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.
Molecular and Cellular Biology | 2007
Chun-Song Yang; Hong-Wu Xin; Joshua B. Kelley; Adam Spencer; David L. Brautigan; Bryce M. Paschal
ABSTRACT We describe a mechanism for protein phosphatase 2A (PP2A) targeting to the androgen receptor (AR) and provide insight into the more general issue of kinase and phosphatase interactions with AR. Simian virus 40 (SV40) small t antigen (ST) binding to N-terminal HEAT repeats in the PP2A A subunit induces structural changes transduced to C-terminal HEAT repeats. This enables the C-terminal HEAT repeats in the PP2A A subunit, including HEAT repeat 13, to discriminate between androgen- and androgen antagonist-induced AR conformations. The PP2A-AR interaction was used to show that an AR mutant in prostate cancer cells (T877A) is activated by multiple ligands without acquiring the same conformation as that induced by androgen. The correlation between androgen binding to AR and increased phosphorylation of the activation function 1 (AF-1) region implies that changes in AR conformation or chaperone composition are causal to kinase access to phosphorylation sites. However, AF-1 phosphorylation sites are kinase accessible prior to androgen binding. This suggests that androgens can enhance the phosphorylation state of AR either by negatively regulating the ability of the ligand-binding domain to bind phosphatases or by inducing an AR conformation that is resistant to phosphatase action. SV40 ST subverts this mechanism by promoting the direct transfer of PP2A onto androgen-bound AR, resulting in multisite dephosphorylation.
Molecular and Cellular Biology | 2013
Li Ni; Ryan Llewellyn; Cristina T. Kesler; Joshua B. Kelley; Adam Spencer; Chelsi J. Snow; Leonard Shank; Bryce M. Paschal
ABSTRACT The androgen receptor (AR) has critical functions as a transcription factor in both normal and cancer cells, but the specific mechanisms that regulate its nuclear localization are not well defined. We found that an AR mutation commonly reported in prostate cancer generates an androgen-independent gain of function for nuclear import. The substitution, Thr877Ala, is within the ligand-binding domain, but the nuclear import gain of function is mediated by the bipartite nuclear localization signal (NLS) spanning the DNA-binding domain (DBD) and hinge region. Bipartite NLS activity depends on the structure provided by the DBD, and protein interactions with the bipartite NLS are repressed by the hinge region. The bipartite NLS is recognized by importin 7, a nuclear import receptor for several proteins. Importin 7 binding to AR, however, inhibits import by shielding the bipartite NLS. Androgen binding relieves the inhibition by inducing a switch that promotes exchange of importin 7 for karyopherin alpha import receptors. Importin 7 contributes to the regulation of AR import by restraining import until androgen is detected in the cytoplasm.
Journal of Biological Chemistry | 2008
Leonard Shank; Joshua B. Kelley; Daniel Gioeli; Chun-Song Yang; Adam Spencer; Lizabeth A. Allison; Bryce M. Paschal
The androgen receptor undergoes nuclear import in response to ligand, but the mechanism by which it undergoes nuclear export is poorly understood. We developed a permeabilized cell assay to characterize nuclear export of the androgen receptor in LNCaP prostate cancer cells. We found that nuclear export of endogenous androgen receptor can be stimulated by short double-stranded DNA oligonucleotides. This androgen receptor export pathway is dependent on ATP hydrolysis and is enhanced by phosphatase inhibition with okadaic acid. Fluorescence recovery after photobleaching in permeabilized cells, under the conditions that stimulate androgen receptor export, suggested that double-stranded DNA-dependent export does not simply reflect the relief of a nuclear retention mechanism. A radiolabeled androgen was used to show that the androgen receptor remains ligand-bound during translocation through the nuclear pore complex. A specific inhibitor to the DNA-dependent protein kinase, NU7026, inhibits androgen receptor export and phosphorylation. In living cells, NU7026 treatment increases androgen-dependent transcription from endogenous genes that are regulated by androgen receptor. We suggest that DNA-dependent protein kinase phosphorylation of the androgen receptor, or an interacting component, helps target the androgen receptor for export from the nucleus.
Current Biology | 2015
Joshua B. Kelley; Gauri Dixit; Joshua Sheetz; Sai Phanindra Venkatapurapu; Timothy C. Elston; Henrik G. Dohlman
BACKGROUND Septins are well known to form a boundary between mother and daughter cells in mitosis, but their role in other morphogenic states is poorly understood. RESULTS Using microfluidics and live-cell microscopy, coupled with new computational methods for image analysis, we investigated septin function during pheromone-dependent chemotropic growth in yeast. We show that septins colocalize with the regulator of G protein signaling (RGS) Sst2, a GTPase-activating protein that dampens pheromone receptor signaling. We show further that the septin structure surrounds the polar cap, ensuring that cell growth is directed toward the source of pheromone. When RGS activity is abrogated, septins are partially disorganized. Under these circumstances, the polar cap travels toward septin structures and away from sites of exocytosis, resulting in a loss of gradient tracking. CONCLUSIONS Septin organization is dependent on RGS protein activity. When assembled correctly, septins promote turning of the polar cap and proper tracking of a pheromone gradient.
European Journal of Human Genetics | 2014
Alex R. Paciorkowski; Judy Weisenberg; Joshua B. Kelley; Adam Spencer; Emily Tuttle; Dalia H. Ghoneim; Liu Lin Thio; Susan L. Christian; William B. Dobyns; Bryce M. Paschal
Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox–Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor.
Molecular Cell | 2014
Gauri Dixit; Joshua B. Kelley; John R. Houser; Timothy C. Elston; Henrik G. Dohlman
G proteins and their associated receptors process information from a variety of environmental stimuli to induce appropriate cellular responses. Generally speaking, each cell in a population responds within defined limits, despite large variation in the expression of protein signaling components. Therefore, we postulated that noise suppression is encoded within the signaling system. Using the yeast mating pathway as a model, we evaluated the ability of a regulator of G protein signaling (RGS) protein to suppress noise. We found that the RGS protein Sst2 limits variability in transcription and morphogenesis in response to pheromone stimulation. While signal suppression is a result of both the GAP (GTPase accelerating) and receptor binding functions of Sst2, noise suppression requires only the GAP activity. Taken together, our findings reveal a hitherto overlooked role of RGS proteins as noise suppressors and demonstrate an ability to uncouple signal and noise in a prototypical stimulus-response pathway.
Journal of Biological Chemistry | 2011
Matthew P. Torres; Joshua B. Kelley; Henrik G. Dohlman; Yuqi Wang
Ste4 is the β subunit of a heterotrimeric G protein that mediates mating responses in Saccharomyces cerevisiae. Here we show that Ste4 undergoes ubiquitination in response to pheromone stimulation. Ubiquitination of Ste4 is dependent on the E3 ligase Rsp5. Disrupting the activity of Rsp5 abolishes ubiquitination of Ste4 in vivo, and recombinant Rsp5 is capable of ubiquitinating Ste4 in vitro. We find also that Lys-340 is a major ubiquitination site on Ste4, as pheromone-induced ubiquitination of the protein is prevented when this residue is mutated to an arginine. Functionally, ubiquitination does not appear to regulate the stability of Ste4, as blocking ubiquitination has no apparent effect on either the abundance or the half-life of the protein. However, when presented with a concentration gradient of pheromone, Ste4K340R mutant cells polarize significantly faster than wild-type cells, indicating that ubiquitination limits pheromone-directed polarized growth. Together, these findings reveal a novel stimulus-dependent posttranslational modification of a Gβ subunit, establish Ste4 as a new substrate of the E3 ligase Rsp5, and demonstrate a role for G protein ubiquitination in cell polarization.
Molecular Biology of the Cell | 2015
Michal J. Nagiec; Patrick C. McCarter; Joshua B. Kelley; Gauri Dixit; Timothy C. Elston; Henrik G. Dohlman
MAPKs are activated by dual phosphorylation. Much of the MAPK Fus3 is monophosphorylated and acts to inhibit signaling in vivo. Computational models reveal how a kinase scaffold and phosphatase act together to dynamically regulate dual-phosphorylated and monophosphorylated MAPKs and the downstream signal.