Joshua Brody
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua Brody.
Journal of Clinical Investigation | 2013
Aurélien Marabelle; Holbrook Kohrt; Idit Sagiv-Barfi; Bahareh Ajami; Robert C. Axtell; Gang Zhou; Ranjani Rajapaksa; Michael R. Green; James Torchia; Joshua Brody; Richard Luong; Michael D. Rosenblum; Lawrence Steinman; Hyam I. Levitsky; Victor Tse; Ronald Levy
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti-CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response.
Blood | 2012
Youn H. Kim; Dita Gratzinger; Cameron Harrison; Joshua Brody; Debra K. Czerwinski; Weiyun Z. Ai; Anjali Morales; Farah Abdulla; Leon Xing; Daniel Navi; Robert Tibshirani; Ranjana H. Advani; Bharathi Lingala; Sumit Shah; Richard T. Hoppe; Ronald Levy
We have developed and previously reported on a therapeutic vaccination strategy for indolent B-cell lymphoma that combines local radiation to enhance tumor immunogenicity with the injection into the tumor of a TLR9 agonist. As a result, antitumor CD8(+) T cells are induced, and systemic tumor regression was documented. Because the vaccination occurs in situ, there is no need to manufacture a vaccine product. We have now explored this strategy in a second disease: mycosis fungoides (MF). We treated 15 patients. Clinical responses were assessed at the distant, untreated sites as a measure of systemic antitumor activity. Five clinically meaningful responses were observed. The procedure was well tolerated and adverse effects consisted mostly of mild and transient injection site or flu-like symptoms. The immunized sites showed a significant reduction of CD25(+), Foxp3(+) T cells that could be either MF cells or tissue regulatory T cells and a similar reduction in S100(+), CD1a(+) dendritic cells. There was a trend toward greater reduction of CD25(+) T cells and skin dendritic cells in clinical responders versus nonresponders. Our in situ vaccination strategy is feasible also in MF and the clinical responses that occurred in a subset of patients warrant further study with modifications to augment these therapeutic effects. This study is registered at www.clinicaltrials.gov as NCT00226993.
Immunity | 2016
Hélène Salmon; Juliana Idoyaga; Adeeb Rahman; Marylene Leboeuf; Romain Remark; Stefan Jordan; Maria Casanova-Acebes; Makhzuna Khudoynazarova; Judith Agudo; Navpreet Tung; Svetoslav Chakarov; Christina Rivera; Brandon Hogstad; Marcus Bosenberg; Daigo Hashimoto; Sacha Gnjatic; Nina Bhardwaj; Anna Karolina Palucka; Brian D. Brown; Joshua Brody; Florent Ginhoux; Miriam Merad
Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.
Blood | 2015
Jonathan Reichel; Amy Chadburn; Paul G. Rubinstein; Lisa Giulino-Roth; Wayne Tam; Yifang Liu; Rafael Gaiolla; Kenneth Eng; Joshua Brody; Giorgio Inghirami; Carmelo Carlo-Stella; Armando Santoro; Daoud Rahal; Jennifer Totonchy; Olivier Elemento; Ethel Cesarman; Mikhail Roshal
Classical Hodgkin lymphoma (cHL) is characterized by sparsely distributed Hodgkin and Reed-Sternberg (HRS) cells amid reactive host background, complicating the acquisition of neoplastic DNA without extensive background contamination. We overcame this limitation by using flow-sorted HRS and intratumor T cells and optimized low-input exome sequencing of 10 patient samples to reveal alterations in genes involved in antigen presentation, chromosome integrity, transcriptional regulation, and ubiquitination. β-2-microglobulin (B2M) is the most commonly altered gene in HRS cells, with 7 of 10 cases having inactivating mutations that lead to loss of major histocompatibility complex class I (MHC-I) expression. Enforced wild-type B2M expression in a cHL cell line restored MHC-I expression. In an extended cohort of 145 patients, the absence of B2M protein in the HRS cells was associated with lower stage of disease, younger age at diagnosis, and better overall and progression-free survival. B2M-deficient cases encompassed most of the nodular sclerosis subtype cases and only a minority of mixed cellularity cases, suggesting that B2M deficiency determines the tumor microenvironment and may define a major subset of cHL that has more uniform clinical and morphologic features. In addition, we report previously unknown genetic alterations that may render selected patients sensitive to specific targeted therapies.
Blood | 2013
June H. Myklebust; Jonathan M. Irish; Joshua Brody; Debra K. Czerwinski; Roch Houot; Holbrook Kohrt; John M. Timmerman; Jonathan W. Said; Michael R. Green; Jan Delabie; Arne Kolstad; Ash A. Alizadeh; Ronald Levy
Defects in T-cell function in patients with cancer might influence their capacity to mount efficient antitumor immune responses. Here, we identified highly reduced IL-4-, IL-10-, and IL-21-induced phosphorylation of STAT6 and STAT3 in tumor-infiltrating T cells (TILs) in follicular lymphoma (FL) tumors, contrasting other non-Hodgkin lymphoma TILs. By combining phospho-protein-specific flow cytometry with several T-cell markers, we identified that CD4(+)CD45RO(+)CD62L(-) FL TILs were largely nonresponsive to cytokines, in contrast to the corresponding autologous peripheral blood subset. We observed differential expression of the inhibitory receptor PD-1 in FL TILs and peripheral blood T cells. Furthermore, CD4(+)PD-1(hi) FL TILs, containing T(FH) and non-T(FH) cells, had lost their cytokine responsiveness, whereas PD-1 TILs had normal cytokine signaling. However, this phenomenon was not tumor specific, because tonsil T cells were similar to FL TILs. FL tumor cells were negative for PD-1 ligands, but PD-L1(+) histiocytes were found within the T cell-rich zone of the neoplastic follicles. Disruption of the microenvironment and in vitro culture of FL TILs could restore cytokine signaling in the PD-1(hi) subset. Because FL TILs in vivo probably receive suppressive signals through PD-1, this provides a rationale for testing PD-1 Ab in combination with immunotherapy in patients with FL.
Journal of Clinical Oncology | 2011
Joshua Brody; Holbrook Kohrt; Aurélien Marabelle; Ronald Levy
Conventional chemotherapy for lymphoma has advanced greatly over the past 50 years, changing some lymphoma subtypes from uniformly lethal to curable; however, the majority of lymphomas in patients remain incurable, and there is a need for novel therapies with less toxicity and more specific targeting of tumor cells. The vertebrate immune system has evolved the capacity for such specific targeting through the B-cell and T-cell receptors; passive immunotherapies utilizing these receptors, such as monoclonal antibodies (mAbs) or T cells, have shown efficacy in treating lymphomas. The first generation of mAb-based therapies has transformed the standard of care for lymphoma, and newer antibodies may improve on this approach. Clinical activity has been shown by T cells bearing receptors that target viral antigens as well as T cells bearing re-engineered receptors that target antigens recognized by antibodies. Active immunotherapies, such as vaccines and immune checkpoint blockades, have prolonged survival in certain solid tumors and are being actively pursued to treat lymphoma. A variety of vaccines (eg, protein- and cell-based vaccines) are being tested in ongoing trials, and the most recent iterations show therapeutic activity. Newer trials are addressing the problem of tumor-induced immunosuppression by the use of antibodies against immunologic checkpoints or by the reinfusion of primed T cells after lymphodepletion, a process we refer to as immunotransplantation. Herein, we discuss results of the various immunotherapy strategies applied to lymphoma and the ongoing approaches for their improvement.
PLOS Genetics | 2013
Luca Grumolato; Guizhong Liu; Tomomi Haremaki; Sathish Kumar Mungamuri; Phyllus Mong; Gal Akiri; Pablo Lopez-Bergami; Adriana Arita; Youssef Anouar; Marek Mlodzik; Ze'ev Ronai; Joshua Brody; Daniel C. Weinstein; Stuart A. Aaronson
The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Patrick P. Ng; Ming Jia; Kedar G. Patel; Joshua Brody; James R. Swartz; Shoshana Levy; Ronald Levy
Clinical studies of idiotype (Id) vaccination in patients with lymphoma have established a correlation between the induced anti-Id antibody responses and favorable clinical outcomes. To streamline the production of an Id vaccine, we engineered a small diabody (Db) molecule containing both a B-cell–targeting moiety (anti-CD19) and a lymphoma Id. This molecule (αCD19-Id) was designed to penetrate lymph nodes and bind to noncognate B cells to form an antigen presentation array. Indeed, the αCD19-Id molecule accumulated on B cells in vivo after s.c. administration. These noncognate B cells, decorated with the diabody, could then stimulate the more rare Id-specific B cells. Peptide epitopes present in the diabody linker augmented the response by activating CD4+ helper T cells. Consequently, the αCD19-Id molecule induced a robust Id-specific antibody response and protected animals from tumor challenge. Such diabodies are produced in a cell-free protein expression system within hours of amplification of the specific Ig genes from the B-cell tumor. This customized product can now be available to vaccinate patients before they receive other, potentially immunosuppressive, therapies.
Molecular Oncology | 2015
Linda Hammerich; Adam F. Binder; Joshua Brody
As cancer immunotherapy continues to benefit from novel approaches which cut immune ‘brake pedals’ (e.g. anti‐PD1 and anti‐CTLA4 antibodies) and push immune cell gas pedals (e.g. IL2, and IFNα) there will be increasing need to develop immune ‘steering wheels’ such as vaccines to guide the immune system specifically toward tumor associated antigens. Two primary hurdles in cancer vaccines have been: identification of universal antigens to be used in ‘off‐the‐shelf’ vaccines for common cancers, and 2) logistical hurdles of ex vivo production of individualized whole tumor cell vaccines. Here we summarize approaches using ‘in situ vaccination’ in which intratumoral administration of off‐the‐shelf immunomodulators have been developed to specifically induce (or amplify) T cell responses to each patients individual tumor. Clinical studies have confirmed the induction of systemic immune and clinical responses to such approaches and preclinical models have suggested ways to further potentiate the translation of in situ vaccine trials for our patients.
Human Vaccines & Immunotherapeutics | 2015
Robert H. Pierce; Jean S. Campbell; Sara I. Pai; Joshua Brody; Holbrook Kohrt
After decades of development in the shadow of traditional cancer treatment, immunotherapy has come into the spotlight. Treatment of metastatic tumors with monoclonal antibodies to T cell checkpoints like programed cell death 1 (PD-1) or its ligand, (PD-L1), have resulted in significant clinical responses across multiple tumor types. However, these therapies fail in the majority of patients with solid tumors, in particular those who lack PD1+CD8+ tumor-infiltrating lymphocytes within their tumors. Intratumoral “in situ vaccination” approaches seek to enhance immunogenicity, generate tumor infiltrating lymophcytes (TIL) and drive a systemic anti-tumor immune response, directed against “unvaccinated,” disseminated tumors. Given the emerging picture of intratumoral immunotherapy as safe and capable of delivering systemic efficacy, it is anticipated that these approaches will become integrated into future multi-modality therapy.