Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua C. Brumberg is active.

Publication


Featured researches published by Joshua C. Brumberg.


Brain Stimulation | 2009

Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro

Thomas Radman; Raddy L. Ramos; Joshua C. Brumberg

BACKGROUND The neocortex is the most common target of subdural electrotherapy and noninvasive brain stimulation modalities, including transcranial magnetic stimulation (TMS) and transcranial current simulation (TCS). Specific neuronal elements targeted by cortical stimulation are considered to underlie therapeutic effects, but the exact cell type(s) affected by these methods remains poorly understood. OBJECTIVE We determined whether neuronal morphology or cell type predicted responses to subthreshold and suprathreshold uniform electric fields. METHODS We characterized the effects of subthreshold and suprathreshold electrical stimulation on identified cortical neurons in vitro. Uniform electric fields were applied to rat motor cortex brain slices, while recording from interneurons and pyramidal cells across cortical layers, using a whole-cell patch clamp. Neuron morphology was reconstructed after intracellular dialysis of biocytin. Based solely on volume-weighted morphology, we developed a parsimonious model of neuronal soma polarization by subthreshold electric fields. RESULTS We found that neuronal morphology correlated with somatic subthreshold polarization. Based on neuronal morphology, we predict layer V pyramidal neuronal soma to be individually the most sensitive to polarization by optimally oriented subthreshold fields. Suprathreshold electric field action potential threshold was shown to reflect both direct cell polarization and synaptic (network) activation. Layer V/VI neuron absolute electric field action potential thresholds were lower than layer II/III pyramidal neurons and interneurons. Compared with somatic current injection, electric fields promoted burst firing and modulated action potential firing times. CONCLUSIONS We present experimental data indicating that cortical neuron morphology relative to electric fields and cortical cell type are factors in determining sensitivity to sub- and supra-threshold brain stimulation.


The Journal of Neuroscience | 2007

Sensory Deprivation Alters Aggrecan and Perineuronal Net Expression in the Mouse Barrel Cortex

Paulette A. McRae; Mary M. Rocco; Gail M. Kelly; Joshua C. Brumberg; Russell T. Matthews

An important role for the neural extracellular matrix in modulating cortical activity-dependent synaptic plasticity has been established by a number of recent studies. However, identification of the critical molecular components of the neural matrix that mediate these processes is far from complete. Of particular interest is the perineuronal net (PN), an extracellular matrix component found surrounding the cell body and proximal neurites of a subset of neurons. Because of the apposition of the PN to synapses and expression of this structure coincident with the close of the critical period, it has been hypothesized that nets could play uniquely important roles in synapse stabilization and maturation. Interestingly, previous work has also shown that expression of PNs is dependent on appropriate sensory stimulation in the visual system. Here, we investigated whether PNs in the mouse barrel cortex are expressed in an activity-dependent manner by manipulating sensory input through whisker trimming. Importantly, this manipulation did not lead to a global loss of PNs but instead led to a specific decrease in PNs, detected with the antibody Cat-315, in layer IV of the barrel cortex. In addition, we identified a key activity-regulated component of PNs is the proteoglycan aggrecan. We also demonstrate that these Cat-315-positive neurons virtually all also express parvalbumin. Together, these data are in support of an important role for aggrecan in the activity-dependent formation of PNs on parvalbumin-expressing cells and suggest a role for expression of these nets in regulating the close of the critical period.


Journal of Computational Neuroscience | 1996

A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations

David J. Pinto; Joshua C. Brumberg; Daniel J. Simons; G. Bard Ermentrout; Roger D. Traub

Beginning from a biologically based integrate and fire model of a rat whisker barrel, we employ semirigorous techniques to reduce the system to a simple set of equations, similar to the Wilson-Cowan equations, while retaining the ability for both qualitative and quantitative comparisons with the biological system. This is made possible through the clarification of three distinct measures of population activity: voltage, firing rate, and a new term called synaptic drive. The model is activated by prerecorded neural activity obtained from thalamic “barreloid” neurons in response to whisker stimuli. Output is produced in the form of population PSTHs, one each corresponding to activity of spiny (excitatory) and smooth (inhibitory) barrel neurons, which is quantitatively comparable to PSTHs from electrophysiologically studied regular-spike and fast-spike neurons. Through further analysis, the model yields novel physiological predictions not readily apparent from the full model or from experimental studies.


The Journal of Neuroscience | 2011

Bone Morphogenetic Protein Inhibition Promotes Neurological Recovery after Intraventricular Hemorrhage

Krishna Dummula; Govindaiah Vinukonda; Philip Chu; Yiping Xing; Furong Hu; Sabrina Mailk; Anna Csiszar; Caroline Chua; Peter R. Mouton; Robert J. Kayton; Joshua C. Brumberg; Rashmi Bansal; Praveen Ballabh

Intraventricular hemorrhage (IVH) results in neural cell death and white matter injury in premature infants. No therapeutic strategy is currently available against this disorder. Bone morphogenetic protein (BMP) signaling suppresses oligodendrocyte development through basic-helix-loop-helix (bHLH) transcription factors and promotes astrocytosis. Therefore, we hypothesized that IVH in premature newborns initiates degeneration and maturation arrest of oligodendrocyte lineage and that BMP inhibition alleviates hypomyelination, gliosis, and motor impairment in the survivors of IVH. To test the hypotheses, a rabbit model of IVH was used in which premature rabbit pups (E29) are treated with intraperitoneal glycerol at 2 h of age to induce IVH; and the pups with IVH exhibit hypomyelination and gliosis at 2 weeks of postnatal age. Maturation of oligodendrocyte lineage was evaluated by specific markers, and the expression of bHLH transcription factors was assessed. BMP levels were measured in both premature rabbit pups and autopsy materials from premature infants. Recombinant human noggin was used to suppress BMP action; and neurobehavioral performance, myelination and gliosis were assessed in noggin-treated pups compared with untreated controls. We found that IVH resulted in apoptosis and reduced proliferation of oligodendrocyte progenitors, as well as arrested maturation of preoligodendrocytes in rabbits. BMP4 levels were significantly elevated in both rabbit pups and human premature infants with IVH compared with controls. Importantly, BMP inhibition by recombinant human noggin restored the levels of phospho-Smad1/5/8, Olig2 transcription factor, oligodendrocyte maturation, myelination, astrocyte morphology, and motor function in premature pups with IVH. Hence, BMP inhibition might enhance neurological recovery in premature infants with IVH.


Somatosensory and Motor Research | 1998

Laminar differences in bicuculline methiodide's effects on cortical neurons in the rat whisker/barrel system

Harold T. Kyriazi; George E. Carvell; Joshua C. Brumberg; Daniel J. Simons

Extracellular unit recordings were made at various depths within SmI barrel cortex of immobilized, sedated rats, in the presence and absence of titrated amounts of the GABA(A) receptor antagonist bicuculline methiodide (BMI). Principal and adjacent whiskers were moved singly, or in paired combination in a condition-test paradigm, to assess excitatory and inhibitory receptive field (RF) characteristics. Neurons were classified as regular- or fast-spike units, and divided into three laminar groups: supragranular, granular (barrel), and infragranular. BMI increased response magnitude and duration, but did not affect response latencies. The excitatory RFs of barrel units, which are the most tightly focused on the principal whisker, were the most greatly defocused by BMI; infragranular units were least affected. All three layers had approximately equal amounts of adjacent whisker-evoked, surround inhibition, but BMI counteracted this inhibition substantially in barrel units and less so in infragranular units. The effects of BMI were most consistent in the barrel; more heterogeneity was found in the non-granular layers. These lamina-dependent effects of BMI are consistent with the idea that between-whisker inhibition is generated mostly within individual layer IV barrels as a result of the rapid engagement of strong, local inhibitory circuitry, and is subsequently embedded in layer IVs output to non-layer IV neurons. The latters surround inhibition is thus relatively resistant to antagonism by locally applied BMI. The greater heterogeneity of non-granular units in terms of RF properties and the effects of BMI is consistent with other findings demonstrating that neighboring neurons in these layers may participate in different local circuits.


Journal of Neurophysiology | 2009

Whisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats.

V. Khatri; R. Bermejo; Joshua C. Brumberg; A. Keller; H. P. Zeigler

Active sensing requires the brain to distinguish signals produced by external inputs from those generated by the animals own movements. Because the rodent whisker musculature lacks proprioceptors, we asked whether trigeminal ganglion neurons encode the kinematics of the rats own whisker movements in air. By examining the role of kinematics, we have extended previous findings showing that many neurons that respond during such movements do not do so consistently. Nevertheless, the majority ( approximately 70%) of trigeminal ganglion neurons display significant correlations between firing rate and a kinematic parameter, and a subset, approximately 30%, represent kinematics with high reliability. Preferential firing to movement direction was observed but was strongly modulated by movement amplitude and speed. However, in contrast to the precise time-locking that occurs in response to active whisker contacts, whisker movements in air generate temporally dispersed responses that are not time-locked to the onset of either protractions or retractions.


The Journal of Comparative Neurology | 2009

Morphological Heterogeneity of Layer VI Neurons in Mouse Barrel Cortex

Chia-Chien Chen; Svetlana Abrams; Alex Pinhas; Joshua C. Brumberg

Understanding the basic neuronal building blocks of the neocortex is a necessary first step toward comprehending the composition of cortical circuits. Neocortical layer VI is the most morphologically diverse layer and plays a pivotal role in gating information to the cortex via its feedback connection to the thalamus and other ipsilateral and callosal corticocortical connections. The heterogeneity of function within this layer is presumably linked to its varied morphological composition. However, so far, very few studies have attempted to define cell classes in this layer using unbiased quantitative methodologies. Utilizing the Golgi staining technique along with the Neurolucida software, we recontructed 222 cortical neurons from layer VI of mouse barrel cortex. Morphological analyses were performed by quantifying somatic and dendritic parameters, and, by using principal component and cluster analyses, we quantitatively categorized neurons into six distinct morphological groups. Additional systematic replication on a separate population of neurons yielded similar results, demonstrating the consistency and reliability of our categorization methodology. Subsequent post hoc analyses of dendritic parameters supported our neuronal classification scheme. Characterizing neuronal elements with unbiased quantitative techniques provides a framework for better understanding structure–function relationships within neocortical circuits in general. J. Comp. Neurol. 512:726–746, 2009.


Brain Research | 1996

Effects of baclofen and phaclofen on receptive field properties of rat whisker barrel neurons

Harold T. Kyriazi; George E. Carvell; Joshua C. Brumberg; Daniel J. Simons

Extracellular single-unit recordings were made in somatosensory cortical barrels of fentanyl-sedated rats. Whiskers were deflected singly or in paired combinations. Iontophoretically-applied (-)-baclofen disproportionately reduced weak responses, and phaclofen disproportionately increased them, resulting in more tightly focused or more broadly focused receptive fields, respectively. Both drugs had only minor effects on surround inhibition. In light of previous findings, we conclude that GABAA and GABAB mechanisms both act to enhance spatial contrast, but that the former plays a much greater role in enhancing temporal resolution.


Journal of Neuroscience Methods | 2007

The sensorimotor slice

Mary M. Rocco; Joshua C. Brumberg

The reciprocal connections between primary motor cortex (M1) and primary somatosensory cortex (S1) are hypothesized to play a role in an animals ability to update its motor plan in response to changes in the sensory periphery. These interactions provide the sensory cortex with anticipatory knowledge of motor plans. In the mouse neocortex there are representations of the body surface within both M1 and S1. Utilizing physiologically targeted micro injections of biotinylated dextran amine into either the whisker representation of M1 (wM1) or S1 (wS1) we characterized the axonal pathways connecting these two areas. We then used this data to determine a plane of section that contained both whisker M1 and whisker S1 and maintained the axonal pathway between these two areas. In vitro physiological studies demonstrated that excitatory synaptic connections are maintained in this novel plane of section. The sensorimotor slice is an ideal preparation to study inter-areal cortical connectivity.


Somatosensory and Motor Research | 2011

Characteristics of synaptic connections between rodent primary somatosensory and motor cortices

Mary Rocco-Donovan; Raddy L. Ramos; Sandra Giraldo; Joshua C. Brumberg

The reciprocal connections between primary motor (M1) and primary somatosensory cortices (S1) are hypothesized to play a crucial role in the ability to update motor plans in response to changes in the sensory periphery. These interactions provide M1 with information about the sensory environment that in turn signals S1 with anticipatory knowledge of ongoing motor plans. In order to examine the synaptic basis of sensorimotor feedforward (S1–M1) and feedback (M1–S1) connections directly, we utilized whole-cell recordings in slices that preserve these reciprocal sensorimotor connections. Our findings indicate that these regions are connected via direct monosynaptic connections in both directions. Larger magnitude responses were observed in the feedforward direction (S1–M1), while the feedback (M1–S1) responses occurred at shorter latencies. The morphology as well as the intrinsic firing properties of the neurons in these pathways indicates that both excitatory and inhibitory neurons are targeted. Differences in synaptic physiology suggest that there exist specializations within the sensorimotor pathway that may allow for the rapid updating of sensory–motor processing within the cortex in response to changes in the sensory periphery.

Collaboration


Dive into the Joshua C. Brumberg's collaboration.

Top Co-Authors

Avatar

Raddy L. Ramos

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Chu

City University of New York

View shared research outputs
Top Co-Authors

Avatar

David J. Pinto

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ankur Bhambri

New York Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Csiszar

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge