Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Carp is active.

Publication


Featured researches published by Joshua Carp.


NeuroImage | 2012

The secret lives of experiments: Methods reporting in the fMRI literature

Joshua Carp

Replication of research findings is critical to the progress of scientific understanding. Accordingly, most scientific journals require authors to report experimental procedures in sufficient detail for independent researchers to replicate their work. To what extent do research reports in the functional neuroimaging literature live up to this standard? The present study evaluated methods reporting and methodological choices across 241 recent fMRI articles. Many studies did not report critical methodological details with regard to experimental design, data acquisition, and analysis. Further, many studies were underpowered to detect any but the largest statistical effects. Finally, data collection and analysis methods were highly flexible across studies, with nearly as many unique analysis pipelines as there were studies in the sample. Because the rate of false positive results is thought to increase with the flexibility of experimental designs, the field of functional neuroimaging may be particularly vulnerable to false positives. In sum, the present study documented significant gaps in methods reporting among fMRI studies. Improved methodological descriptions in research reports would yield significant benefits for the field.


Frontiers in Neuroscience | 2012

On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments

Joshua Carp

How likely are published findings in the functional neuroimaging literature to be false? According to a recent mathematical model, the potential for false positives increases with the flexibility of analysis methods. Functional MRI (fMRI) experiments can be analyzed using a large number of commonly used tools, with little consensus on how, when, or whether to apply each one. This situation may lead to substantial variability in analysis outcomes. Thus, the present study sought to estimate the flexibility of neuroimaging analysis by submitting a single event-related fMRI experiment to a large number of unique analysis procedures. Ten analysis steps for which multiple strategies appear in the literature were identified, and two to four strategies were enumerated for each step. Considering all possible combinations of these strategies yielded 6,912 unique analysis pipelines. Activation maps from each pipeline were corrected for multiple comparisons using five thresholding approaches, yielding 34,560 significance maps. While some outcomes were relatively consistent across pipelines, others showed substantial methods-related variability in activation strength, location, and extent. Some analysis decisions contributed to this variability more than others, and different decisions were associated with distinct patterns of variability across the brain. Qualitative outcomes also varied with analysis parameters: many contrasts yielded significant activation under some pipelines but not others. Altogether, these results reveal considerable flexibility in the analysis of fMRI experiments. This observation, when combined with mathematical simulations linking analytic flexibility with elevated false positive rates, suggests that false positive results may be more prevalent than expected in the literature. This risk of inflated false positive rates may be mitigated by constraining the flexibility of analytic choices or by abstaining from selective analysis reporting.


NeuroImage | 2011

Age differences in neural distinctiveness revealed by multi-voxel pattern analysis

Joshua Carp; Joonkoo Park; Thad A. Polk; Denise C. Park

Current theories of cognitive aging argue that neural representations become less distinctive in old age, a phenomenon known as dedifferentiation. The present study used multi-voxel pattern analysis (MVPA) to measure age differences in the distinctiveness of distributed patterns of neural activation evoked by different categories of visual images. We found that neural activation patterns within the ventral visual cortex were less distinctive among older adults. Further, we report that age differences in neural distinctiveness extend beyond the ventral visual cortex: older adults also showed decreased distinctiveness in early visual cortex, inferior parietal cortex, and medial and lateral prefrontal cortex. Neural distinctiveness scores in early and late visual areas were highly correlated, suggesting shared mechanisms of age-related decline. Finally, we investigated whether older adults can compensate for altered processing in visual cortex by encoding stimulus information across larger numbers of voxels within the visual cortex or in regions outside visual cortex. We found no evidence that older adults can increase the distinctiveness of distributed activation patterns, either within or beyond the visual cortex. Our results have important implications for theories of cognitive aging and highlight the value of MVPA to the study of neural coding in the aging brain.


Psychophysiology | 2009

Alpha power is influenced by performance errors

Joshua Carp; Rebecca J. Compton

Error commission evokes changes in event-related potentials, autonomic nervous system activity, and behavior, presumably reflecting the operation of a cognitive control network. Here we test the hypothesis that errors lead to increased cortical arousal, measurable as changes in electroencephalogram (EEG) alpha band power. Participants performed a Stroop task while EEG was recorded. Following correct responses, alpha power increased and then decreased in a quadratic pattern, implying transient mental disengagement during the intertrial interval. This trend was absent following errors, which elicited significantly less alpha power than correct trials. Moreover, post-error alpha power was a better predictor of individual differences in post-error slowing than the error-related negativity (ERN), whereas the ERN was a better predictor of post-error accuracy than alpha power. These findings imply that changes in cortical arousal play a unique role in modulating post-error behavior.


The Journal of Neuroscience | 2013

Prefrontal Cholinergic Mechanisms Instigating Shifts from Monitoring for Cues to Cue-Guided Performance: Converging Electrochemical and fMRI Evidence from Rats and Humans

William M. Howe; Anne S. Berry; Jennifer Francois; Gary Gilmour; Joshua Carp; Mark Tricklebank; Cindy Lustig; Martin Sarter

We previously reported involvement of right prefrontal cholinergic activity in veridical signal detection. Here, we first recorded real-time acetylcholine release in prefrontal cortex (PFC) during specific trial sequences in rats performing a task requiring signal detection as well as rejection of nonsignal events. Cholinergic release events recorded with subsecond resolution (“transients”) were observed only during signal-hit trials, not during signal-miss trials or nonsignal events. Moreover, cholinergic transients were not observed for consecutive hits; instead they were limited to signal-hit trials that were preceded by factual or perceived nonsignal events (“incongruent hits”). This finding suggests that these transients mediate shifts from a state of perceptual attention, or monitoring for cues, to cue-evoked activation of response rules and the generation of a cue-directed response. Next, to determine the translational significance of the cognitive operations supporting incongruent hits we used a version of the task previously validated for use in research in humans and blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging. Incongruent hits activated a region in the right rostral PFC (Brodmann area 10). Furthermore, greater prefrontal activation was correlated with faster response times for incongruent hits. Finally, we measured tissue oxygen in rats, as a proxy for BOLD, and found prefrontal increases in oxygen levels solely during incongruent hits. These cross-species studies link a cholinergic response to a prefrontal BOLD activation and indicate that these interrelated mechanisms mediate the integration of external cues with internal representations to initiate and guide behavior.


The Journal of Neuroscience | 2012

Neural Broadening or Neural Attenuation? Investigating Age-Related Dedifferentiation in the Face Network in a Large Lifespan Sample

Joonkoo Park; Joshua Carp; Kristen M. Kennedy; Karen M. Rodrigue; Gérard N. Bischof; Chih Mao Huang; Jennifer R. Rieck; Thad A. Polk; Denise C. Park

Previous studies have found that cortical responses to different stimuli become less distinctive as people get older. This age-related dedifferentiation may reflect the broadening of the tuning curves of category-selective neurons (broadening hypothesis) or it may be due to decreased activation of category-selective neurons (attenuation hypothesis). In this study, we evaluated these hypotheses in the context of the face-selective neural network. Over 300 participants, ranging in age from 20 to 89 years, viewed images of faces, houses, and control stimuli in a functional magnetic resonance imaging session. Regions within the core face network and extended face network were identified in individual subjects. Activation in many of these regions became significantly less face-selective with age, confirming previous reports of age-related dedifferentiation. Consistent with the broadening hypothesis, this dedifferentiation in the fusiform face area (FFA) was driven by increased activation to houses. In contrast, dedifferentiation in the extended face network was driven by decreased activation to faces, consistent with the attenuation hypothesis. These results suggest that age-related dedifferentiation reflects distinct processes in different brain areas. More specifically, dedifferentiation in FFA activity may be due to broadening of the tuning curves for face-selective neurons, while dedifferentiation in the extended face network reflects reduced face- or emotion-selective activity.


Psychological Science | 2008

Error-Monitoring Ability Predicts Daily Stress Regulation

Rebecca J. Compton; Michael D. Robinson; Scott Ode; Lorna C. Quandt; Stephanie L. Fineman; Joshua Carp

This study examined whether individual differences in error-related self-regulation predict emotion regulation in daily life, as suggested by a common-systems view of cognitive and emotional self-regulation. Participants (N = 47) completed a Stroop task, from which error-related brain potentials and behavioral measures of error correction were computed. Participants subsequently reported on daily stressors and anxiety over a 2-week period. As predicted by the common-systems view, a physiological marker of error monitoring and a behavioral measure of error correction predicted emotion regulation in daily life. Specifically, participants higher in cognitive control, as assessed neurally and behaviorally, were less reactive to stress in daily life. The results support the notion that cognitive control and emotion regulation depend on common or interacting systems.


Frontiers in Human Neuroscience | 2010

Age Differences in the Neural Representation of Working Memory Revealed by Multi-Voxel Pattern Analysis

Joshua Carp; Leon Gmeindl; Patricia A. Reuter-Lorenz

Working memory function declines across the lifespan. Computational models of aging attribute such memory impairments to reduced distinctiveness between neural representations of different mental states in old age, a phenomenon termed dedifferentiation. These models predict that neural distinctiveness should be reduced uniformly across experimental conditions in older adults. In contrast, the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) model predicts that the distinctiveness of neural representations should be increased in older adults (relative to young adults) at low levels of task demand but reduced at high levels of demand. The present study used multi-voxel pattern analysis to measure the effects of age and task demands on the distinctiveness of the neural representations of verbal and visuospatial working memory. Neural distinctiveness was estimated separately for memory encoding, maintenance, and retrieval, and for low, medium, and high memory loads. Results from sensory cortex during encoding and retrieval were consistent with the dedifferentiation hypothesis: distinctiveness of visual cortical representations during these phases was uniformly reduced in older adults, irrespective of memory load. However, maintenance-related responses in prefrontal and parietal regions yielded a strikingly different pattern of results. At low loads, older adults showed higher distinctiveness than younger adults; at high loads, this pattern reversed, such that distinctiveness was higher in young adults. This interaction between age group and memory load is at odds with the dedifferentiation hypothesis but consistent with CRUNCH. In sum, our results provide partial support for both dedifferentiation- and compensation-based models; we argue that comprehensive theories of cognitive aging must incorporate aspects of both models to fully explain complex patterns of age-related neuro-cognitive change.


NeuroImage | 2011

Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network

Jérôme Prado; Joshua Carp; Daniel H. Weissman

Although variations of response time (RT) within a particular experimental condition are typically ignored, they may sometimes reflect meaningful changes in the efficiency of cognitive and neural processes. In the present study, we investigated whether trial-by-trial variations of response time (RT) in a cross-modal selective attention task were associated with variations of functional connectivity between brain regions that are thought to underlie attention. Sixteen healthy young adults performed an audiovisual selective attention task, which involved attending to a relevant visual letter while ignoring an irrelevant auditory letter, as we recorded their brain activity using functional magnetic resonance imaging (fMRI). In line with predictions, variations of RT were associated with variations of functional connectivity between the anterior cingulate cortex and various other brain regions that are posited to underlie attentional control, such as the right dorsolateral prefrontal cortex and bilateral regions of the posterior parietal cortex. They were also linked to variations of functional connectivity between anatomically early and anatomically late regions of the relevant-modality visual cortex whose communication is thought to be modulated by attentional control processes. By revealing that variations of RT in a selective attention task are linked to variations of functional connectivity in the attentional network, the present findings suggest that variations of attention may contribute to trial-by-trial fluctuations of behavioral performance.


The Journal of Neuroscience | 2010

Neural Specificity Predicts Fluid Processing Ability in Older Adults

Joonkoo Park; Joshua Carp; Andrew C. Hebrank; Denise C. Park; Thad A. Polk

We investigated whether individual differences in neural specificity—the distinctiveness of different neural representations—could explain individual differences in cognitive performance in older adults. Neural specificity was estimated based on how accurately multivariate pattern analysis identified neural activation patterns associated with specific experimental conditions. Neural specificity calculated from a same/different task on two categories of visual stimuli (faces and houses) significantly predicted performance on a range of fluid processing behavioral tasks (dot-comparison, digit-symbol, Trails-A, Trails-B, verbal-fluency) in older adults, whereas it did not correlate with a measure of crystallized knowledge (Shipley-vocabulary). In addition, the neural specificity measure accounted for 30% of the variance in a composite measure of fluid processing ability. These results are consistent with the hypothesis that loss of neural specificity, or dedifferentiation, contributes to reduced fluid processing ability in old age.

Collaboration


Dive into the Joshua Carp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise C. Park

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. Hebrank

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge