Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Chen is active.

Publication


Featured researches published by Joshua Chen.


The New England Journal of Medicine | 2008

Raltegravir with optimized background therapy for resistant HIV-1 infection.

Roy T. Steigbigel; David A. Cooper; Princy Kumar; Joseph E. Eron; Mauro Schechter; Martin Markowitz; Mona Loutfy; Jeffrey L. Lennox; José M. Gatell; Jürgen K. Rockstroh; Christine Katlama; Patrick Yeni; Adriano Lazzarin; Bonaventura Clotet; Jing Zhao; Joshua Chen; Desmond Ryan; Rand R. Rhodes; John A. Killar; Lucinda R. Gilde; Kim M. Strohmaier; Anne Meibohm; Michael D. Miller; Daria J. Hazuda; Michael L. Nessly; Mark J. DiNubile; Robin Isaacs; Bach Yen Nguyen; Hedy Teppler

BACKGROUND Raltegravir (MK-0518) is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase active against HIV-1 susceptible or resistant to older antiretroviral drugs. METHODS We conducted two identical trials in different geographic regions to evaluate the safety and efficacy of raltegravir, as compared with placebo, in combination with optimized background therapy, in patients infected with HIV-1 that has triple-class drug resistance in whom antiretroviral therapy had failed. Patients were randomly assigned to raltegravir or placebo in a 2:1 ratio. RESULTS In the combined studies, 699 of 703 randomized patients (462 and 237 in the raltegravir and placebo groups, respectively) received the study drug. Seventeen of the 699 patients (2.4%) discontinued the study before week 16. Discontinuation was related to the study treatment in 13 of these 17 patients: 7 of the 462 raltegravir recipients (1.5%) and 6 of the 237 placebo recipients (2.5%). The results of the two studies were consistent. At week 16, counting noncompletion as treatment failure, 355 of 458 raltegravir recipients (77.5%) had HIV-1 RNA levels below 400 copies per milliliter, as compared with 99 of 236 placebo recipients (41.9%, P<0.001). Suppression of HIV-1 RNA to a level below 50 copies per milliliter was achieved at week 16 in 61.8% of the raltegravir recipients, as compared with 34.7% of placebo recipients, and at week 48 in 62.1% as compared with 32.9% (P<0.001 for both comparisons). Without adjustment for the length of follow-up, cancers were detected in 3.5% of raltegravir recipients and in 1.7% of placebo recipients. The overall frequencies of drug-related adverse events were similar in the raltegravir and placebo groups. CONCLUSIONS In HIV-infected patients with limited treatment options, raltegravir plus optimized background therapy provided better viral suppression than optimized background therapy alone for at least 48 weeks. (ClinicalTrials.gov numbers, NCT00293267 and NCT00293254.)


The New England Journal of Medicine | 2015

A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women.

Elmar A. Joura; Anna R. Giuliano; Ole-Erik Iversen; Céline Bouchard; Constance Mao; Jesper Mehlsen; Edson D. Moreira; Yuen Ngan; Lone Kjeld Petersen; Eduardo Lazcano-Ponce; Punnee Pitisuttithum; Jaime Alberto Restrepo; Gavin Stuart; Linn Woelber; Yuh Cheng Yang; Jack Cuzick; Suzanne M. Garland; Warner K. Huh; Susanne K. Kjaer; Oliver M. Bautista; Ivan S. F. Chan; Joshua Chen; Richard Gesser; Erin Moeller; Michael Ritter; Scott Vuocolo; Alain Luxembourg

BACKGROUND The investigational 9-valent viruslike particle vaccine against human papillomavirus (HPV) includes the HPV types in the quadrivalent HPV (qHPV) vaccine (6, 11, 16, and 18) and five additional oncogenic types (31, 33, 45, 52, and 58). Here we present the results of a study of the efficacy and immunogenicity of the 9vHPV vaccine in women 16 to 26 years of age. METHODS We performed a randomized, international, double-blind, phase 2b-3 study of the 9vHPV vaccine in 14,215 women. Participants received the 9vHPV vaccine or the qHPV vaccine in a series of three intramuscular injections on day 1 and at months 2 and 6. Serum was collected for analysis of antibody responses. Swabs of labial, vulvar, perineal, perianal, endocervical, and ectocervical tissue were obtained and used for HPV DNA testing, and liquid-based cytologic testing (Papanicolaou testing) was performed regularly. Tissue obtained by means of biopsy or as part of definitive therapy (including a loop electrosurgical excision procedure and conization) was tested for HPV. RESULTS The rate of high-grade cervical, vulvar, or vaginal disease irrespective of HPV type (i.e., disease caused by HPV types included in the 9vHPV vaccine and those not included) in the modified intention-to-treat population (which included participants with and those without prevalent infection or disease) was 14.0 per 1000 person-years in both vaccine groups. The rate of high-grade cervical, vulvar, or vaginal disease related to HPV-31, 33, 45, 52, and 58 in a prespecified per-protocol efficacy population (susceptible population) was 0.1 per 1000 person-years in the 9vHPV group and 1.6 per 1000 person-years in the qHPV group (efficacy of the 9vHPV vaccine, 96.7%; 95% confidence interval, 80.9 to 99.8). Antibody responses to HPV-6, 11, 16, and 18 were noninferior to those generated by the qHPV vaccine. Adverse events related to injection site were more common in the 9vHPV group than in the qHPV group. CONCLUSIONS The 9vHPV vaccine prevented infection and disease related to HPV-31, 33, 45, 52, and 58 in a susceptible population and generated an antibody response to HPV-6, 11, 16, and 18 that was noninferior to that generated by the qHPV vaccine. The 9vHPV vaccine did not prevent infection and disease related to HPV types beyond the nine types covered by the vaccine. (Funded by Merck; ClinicalTrials.gov number, NCT00543543).


The New England Journal of Medicine | 2008

Subgroup and Resistance Analyses of Raltegravir for Resistant HIV-1 Infection

David A. Cooper; Roy T. Steigbigel; José M. Gatell; Jürgen K. Rockstroh; Christine Katlama; Patrick Yeni; Adriano Lazzarin; Bonaventura Clotet; Princy Kumar; Joseph E. Eron; Mauro Schechter; Martin Markowitz; Mona Loutfy; Jeffrey L. Lennox; Jing Zhao; Joshua Chen; Desmond Ryan; Rand R. Rhodes; John A. Killar; Lucinda R. Gilde; Kim M. Strohmaier; Anne Meibohm; Michael D. Miller; Daria J. Hazuda; Michael L. Nessly; Mark J. DiNubile; Robin Isaacs; Hedy Teppler; Bach Yen Nguyen

BACKGROUND We evaluated the efficacy of raltegravir and the development of viral resistance in two identical trials involving patients who were infected with human immunodeficiency virus type 1 (HIV-1) with triple-class drug resistance and in whom antiretroviral therapy had failed. METHODS We conducted subgroup analyses of the data from week 48 in both studies according to baseline prognostic factors. Genotyping of the integrase gene was performed in raltegravir recipients who had virologic failure. RESULTS Virologic responses to raltegravir were consistently superior to responses to placebo, regardless of the baseline values of HIV-1 RNA level; CD4 cell count; genotypic or phenotypic sensitivity score; use or nonuse of darunavir, enfuvirtide, or both in optimized background therapy; or demographic characteristics. Among patients in the two studies combined who were using both enfuvirtide and darunavir for the first time, HIV-1 RNA levels of less than 50 copies per milliliter were achieved in 89% of raltegravir recipients and 68% of placebo recipients. HIV-1 RNA levels of less than 50 copies per milliliter were achieved in 69% and 80% of the raltegravir recipients and in 47% and 57% of the placebo recipients using either darunavir or enfuvirtide for the first time, respectively. At 48 weeks, 105 of the 462 raltegravir recipients (23%) had virologic failure. Genotyping was performed in 94 raltegravir recipients with virologic failure. Integrase mutations known to be associated with phenotypic resistance to raltegravir arose during treatment in 64 patients (68%). Forty-eight of these 64 patients (75%) had two or more resistance-associated mutations. CONCLUSIONS When combined with an optimized background regimen in both studies, a consistently favorable treatment effect of raltegravir over placebo was shown in clinically relevant subgroups of patients, including those with baseline characteristics that typically predict a poor response to antiretroviral therapy: a high HIV-1 RNA level, low CD4 cell count, and low genotypic or phenotypic sensitivity score. (ClinicalTrials.gov numbers, NCT00293267 and NCT00293254.)


AIDS | 2007

Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase

John M. Murray; Sean Emery; Anthony D. Kelleher; Matthew Law; Joshua Chen; Daria J. Hazuda; Bach-Yen T. Nguyen; Hedy Teppler; David A. Cooper

Objective:Raltegravir (MK-0518) belongs to the new class of HIV integrase inhibitors. To date, there have been no reports investigating the potential for differential effects on viral dynamics with integrase inhibitors relative to current antiretroviral drugs. Methods:Patients in this phase II study (P004) were antiretroviral treatment naive. Part 1 of this study compared monotherapy with raltegravir (100 mg, 200 mg, 400 mg, or 600 mg twice daily) with placebo over 10 days. In part 2, patients were enrolled for 48 weeks of combination therapy, with randomization to one of the four dosages of raltegravir or to efavirenz, in addition to tenofovir and lamivudine. Mathematical models were used to investigate processes underlying viral dynamics. Results:From day 15 through to day 57, individuals in the raltegravir arm were significantly more likely to have HIV RNA < 50 copies/ml (P ≤ 0.047). Plasma viral loads were 70% lower at initiation of second-phase decay for individuals taking raltegravir than for those taking efavirenz (P < 0.0001). This challenges the current hypothesis that second-phase virus originates from infected long-lived cells, as an integrase inhibitor should not impact on viral production from this cell population. Mathematical modeling supported two hypotheses as consistent with these observations: (i) that second-phase virus arises from cells newly infected by long-lived infected cells and (2) that it arises from activation of latently infected cells with full-length unintegrated HIV DNA. Conclusions:These observations challenge the current understanding of HIV-1 turnover and compartmentalization. They also indicate the promise of this new integrase inhibitor raltegravir.


Pediatrics | 2015

Immunogenicity and Safety of a 9-Valent HPV Vaccine

Pierre Van Damme; Sven Eric Olsson; Stanley Hoyt Block; Xavier Castellsagué; Glenda Gray; Teobaldo Herrera; Li-Min Huang; Dong Soo Kim; Punnee Pitisuttithum; Joshua Chen; Susan Christiano; Roger Maansson; Erin Moeller; Xiao Sun; Scott Vuocolo; Alain Luxembourg

OBJECTIVES: Prophylactic vaccination of youngwomen aged 16 to 26 years with the 9-valent (6/11/16/18/31/33/45/52/58) human papillomavirus (HPV) virus-like particle (9vHPV) vaccine prevents infection and disease. We conducted a noninferiority immunogenicity study to bridge the findings in young women to girls and boys aged 9 to 15 years. METHODS: Subjects (N = 3066) received a 3-dose regimen of 9vHPV vaccine administered at day 1, month 2, and month 6. Anti-HPV serologic assays were performed at day 1 and month 7. Noninferiority required that the lower bound of 2-sided 95% confidence intervals of geometric mean titer ratios (boys:young women or girls:young women) be >0.67 for each HPV type. Systemic and injection-site adverse experiences (AEs) and serious AEs were monitored. RESULTS: At 4 weeks after dose 3, >99% of girls, boys, and young women seroconverted for each vaccine HPV type. Increases in geometric mean titers to HPV types 6/11/16/18/31/33/45/52/58 were elicited in all vaccine groups. Responses in girls and boys were noninferior to those of young women. Persistence of anti-HPV responses was demonstrated through 2.5 years after dose 3. Administration of the 9vHPV vaccine was generally well tolerated. A lower proportion of girls (81.9%) and boys (72.8%) than young women (85.4%) reported injection-site AEs, most of which were mild to moderate in intensity. CONCLUSIONS: These data support bridging the efficacy findings with 9vHPV vaccine in young women 16 to 26 years of age to girls and boys 9 to 15 years of age and implementing gender-neutral HPV vaccination programs in preadolescents and adolescents.


Antimicrobial Agents and Chemotherapy | 2008

Lack of a Significant Drug Interaction between Raltegravir and Tenofovir

Larissa Wenning; Evan J. Friedman; James Kost; Sheila Breidinger; Jon E. Stek; Kenneth C. Lasseter; Keith M. Gottesdiener; Joshua Chen; Hedy Teppler; John A. Wagner; Julie A. Stone; Marian Iwamoto

ABSTRACT Raltegravir is a novel human immunodeficiency virus type 1 (HIV-1) integrase inhibitor with potent in vitro activity (95% inhibitory concentration of 31 nM in 50% human serum). This article reports the results of an open-label, sequential, three-period study of healthy subjects. Period 1 involved raltegravir at 400 mg twice daily for 4 days, period 2 involved tenofovir disoproxil fumarate (TDF) at 300 mg once daily for 7 days, and period 3 involved raltegravir at 400 mg twice daily plus TDF at 300 mg once daily for 4 days. Pharmacokinetic profiles were also determined in HIV-1-infected patients dosed with raltegravir monotherapy versus raltegravir in combination with TDF and lamivudine. There was no clinically significant effect of TDF on raltegravir. The raltegravir area under the concentration time curve from 0 to 12 h (AUC0-12) and peak plasma drug concentration (Cmax) were modestly increased in healthy subjects (geometric mean ratios [GMRs], 1.49 and 1.64, respectively). There was no substantial effect of TDF on raltegravir concentration at 12 h postdose (C12) in healthy subjects (GMR [TDF plus raltegravir-raltegravir alone], 1.03; 90% confidence interval [CI], 0.73 to 1.45), while a modest increase (GMR, 1.42; 90% CI, 0.89 to 2.28) was seen in HIV-1-infected patients. Raltegravir had no substantial effect on tenofovir pharmacokinetics: C24, AUC, and Cmax GMRs were 0.87, 0.90, and 0.77, respectively. Coadministration of raltegravir and TDF does not change the pharmacokinetics of either drug to a clinically meaningful degree. Raltegravir and TDF may be coadministered without dose adjustments.


Annals of the New York Academy of Sciences | 2011

Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium.

Bach-Yen T. Nguyen; Robin Isaacs; Hedy Teppler; Randi Leavitt; Peter Sklar; Marian Iwamoto; Larissa Wenning; Michael D. Miller; Joshua Chen; Ramon Kemp; Wei Xu; Robert A. Fromtling; Joseph P. Vacca; Steven D. Young; Michael Rowley; Michael W. Lower; Keith M. Gottesdiener; Daria J. Hazuda

Raltegravir is the first integrase strand transfer inhibitor approved for the treatment of HIV‐1 infection. As the first agent in this new class of antiretroviral therapies, raltegravir has demonstrated safety and efficacy in treatment‐naive as well as heavily pretreated HIV‐infected patients failing therapy with multidrug‐resistant virus. Raltegravir has a favorable drug interaction profile that permits both administration to a wide, demographically diverse patient population and coadministration with many other therapeutic agents, including antiretroviral agents and supportive medications, without restrictions or dose adjustment. Data through 96 weeks of follow‐up in three phase III studies, protocol 021 (STARTMRK) in treatment‐naive patients, and protocols 018 (BENCHMRK‐1) and 019 (BENCHMRK‐2) in treatment‐experienced patients, demonstrated the potent and durable antiretroviral and immunologic effects and the favorable long‐term safety profile of raltegravir in both treatment‐naive and treatment‐experienced patients. Raltegravir represents an important addition to the current armamentarium for the treatment of HIV infection.


Human Vaccines & Immunotherapeutics | 2015

Phase II studies to select the formulation of a multivalent HPV L1 virus-like particle (VLP) vaccine

Alain Luxembourg; Darron R. Brown; Céline Bouchard; Anna R. Giuliano; Ole Erik Iversen; Elmar A. Joura; Mary E. Penny; Jaime Alberto Restrepo; Josefina Romaguera; Roger Maansson; Erin Moeller; Michael Ritter; Joshua Chen

Our objective was to develop a multivalent prophylactic HPV vaccine that protects against infection and disease caused by HPV16/18 (oncogenic types in existing prophylactic vaccines) plus additional oncogenic types by conducting 3 Phase II studies comparing the immunogenicity (i.e., anti-HPV6/11/16/18 geometric mean titers [GMT]) and safety of 7 vaccine candidates with the licensed quadrivalent HPV6/11/16/18 vaccine (qHPV vaccine) in young women ages 16–26. In the first study (Study 1), subjects received one of 3 dose formulations of an 8-valent HPV6/11/16/18/31/45/52/58 vaccine or qHPV vaccine (control). In Study 2, subjects received one of 3 dose formulations (termed low-, mid-, and high-dose formulations, respectively) of a 9-valent HPV6/11/16/18/31/33/45/52/58 vaccine (9vHPV vaccine) or qHPV vaccine (control). In Study 3, subjects concomitantly received qHPV vaccine plus 5-valent HPV31/33/45/52/58 or qHPV vaccine plus placebo (control). All vaccines were administered at day 1/month 2/month 6. In studies 1 and 3, anti-HPV6/11/16/18 GMTs at month 7 were non-inferior in the experimental arms compared with the control arm; however, there was a trend for lower antibody responses for all 4 HPV types. In Study 2, this immune interference was overcome with the mid- and high-dose formulations of the 9vHPV vaccine by increasing antigen and adjuvant doses. In all 3 studies, all vaccine candidates were strongly immunogenic with respect to HPV31/33/45/52/58 and were well tolerated. Based on the totality of the results, the middle dose formulation of the 9vHPV vaccine was selected for Phase III evaluation. Each 0.5mL dose contains 30μg/40μg/60μg/40μg/20μg/20μg/20μg/20μg/20μg of HPV6/11/16/18/31/33/45/52/58 virus-like particles, and 500μg of amorphous aluminum hydroxyphosphate sulfate adjuvant.ClinicalTrials.gov numbers NCT00260039, NCT00543543, and NCT00551187.


Contemporary Clinical Trials | 2015

Design of a large outcome trial for a multivalent human papillomavirus L1 virus-like particle vaccine.

Alain Luxembourg; Oliver M. Bautista; Erin Moeller; Michael Ritter; Joshua Chen

BACKGROUND The 9-valent human papillomavirus (HPV) (9vHPV) vaccine targets the four HPV types (6/11/16/18) covered by the licensed quadrivalent HPV (qHPV) vaccine and five additional types (31/33/45/52/58). A large outcome trial of 9vHPV vaccine was conducted. METHODS An active control (qHPV vaccine) was used because a placebo is not ethically acceptable. Since qHPV vaccine is (and 9vHPV vaccine was anticipated to be) highly efficacious against HPV 6/11/16/18, low incidence of HPV 6/11/16/18-associated disease was expected. Consequently, an efficacy comparison of 9vHPV versus qHPV vaccine for HPV 6/11/16/18 would have been prohibitively large in size. Moreover, no minimum antibody level predicting protection against infection or disease is defined for HPV vaccination. As an alternative approach, the two vaccines were compared using immunogenicity bridging for HPV 6/11/16/18 and clinical efficacy for HPV 31/33/45/52/58. RESULTS The two co-primary objectives were to demonstrate: (1) non-inferior anti-HPV 6/11/16/18 antibody response; and (2) superior efficacy in HPV 31/33/45/52/58-related clinical outcome, for 9vHPV vaccine versus qHPV vaccine. For HPV 6/11/16/18, supportive analyses included a non-inferiority assessment of the percent risk reduction (compared to historical placebo) for 9vHPV versus qHPV vaccine. CONCLUSIONS A Phase III study of 9vHPV vaccine was successfully implemented. Experience from this study design may be applicable when developing a multivalent vaccine covering the same serotypes as an existing vaccine plus additional serotypes and there is no immune correlate of protection. Also, this study established that efficacy of a new HPV vaccine may be demonstrated using immunogenicity endpoints, which may open new options in HPV vaccine development.


Human Vaccines & Immunotherapeutics | 2015

Phase III, randomized controlled trial in girls 9-15 years old to evaluate lot consistency of a novel nine-valent human papillomavirus L1 virus-like particle vaccine

Alain Luxembourg; Edson D. Moreira; Rudiwilai Samakoses; Kyung Hyo Kim; Xiao Sun; Roger Maansson; Erin Moeller; Susan Christiano; Joshua Chen

A 9-valent human papillomavirus (6/11/16/18/31/33/45/52/58) VLP (9vHPV) vaccine has recently been proven highly efficacious in preventing disease associated with vaccine HPV types in a pivotal Phase III study. The demonstration of lot-to-lot consistency to confirm the reliability of the manufacturing process is a regulatory requirement for vaccine licensure in the United States. A randomized trial was conducted to demonstrate that three lots of 9vHPV vaccine elicit equivalent antibody response for all 9 vaccine types. The study required thorough planning because it required success on 27 separate statistical comparisons. An innovative statistical approach was used taking into account between-lot variance for more conservative power calculations. The study demonstrated equivalence of three lots of 9vHPV vaccine for all 9 vaccine types.

Collaboration


Dive into the Joshua Chen's collaboration.

Researchain Logo
Decentralizing Knowledge