Joshua D. Shamblin
United States Army Medical Research Institute of Infectious Diseases
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua D. Shamblin.
Nature | 2004
Patricia L. Earl; Jeffrey L. Americo; Linda S. Wyatt; Leigh Anne Eller; J. Charles Whitbeck; Gary H. Cohen; Roselyn J. Eisenberg; Chris Hartmann; David L. Jackson; David A. Kulesh; Mark Martinez; David Miller; Eric M. Mucker; Joshua D. Shamblin; Susan H. Zwiers; John W. Huggins; Peter B. Jahrling; Bernard Moss
The potential use of smallpox as a biological weapon has led to the production and stockpiling of smallpox vaccine and the immunization of some healthcare workers. Another public health goal is the licensing of a safer vaccine that could benefit the millions of people advised not to take the current one because they or their contacts have increased susceptibility to severe vaccine side effects. As vaccines can no longer be tested for their ability to prevent smallpox, licensing will necessarily include comparative immunogenicity and protection studies in non-human primates. Here we compare the highly attenuated modified vaccinia virus Ankara (MVA) with the licensed Dryvax vaccine in a monkey model. After two doses of MVA or one dose of MVA followed by Dryvax, antibody binding and neutralizing titres and T-cell responses were equivalent or higher than those induced by Dryvax alone. After challenge with monkeypox virus, unimmunized animals developed more than 500 pustular skin lesions and became gravely ill or died, whereas vaccinated animals were healthy and asymptomatic, except for a small number of transient skin lesions in animals immunized only with MVA.
Science | 2016
Zachary A. Bornholdt; Hannah L. Turner; Charles D. Murin; Wen Li; Devin Sok; Colby A. Souders; Ashley E. Piper; Arthur J. Goff; Joshua D. Shamblin; Suzanne E. Wollen; Thomas R. Sprague; Marnie L. Fusco; Kathleen B.J. Pommert; Lisa A. Cavacini; Heidi L. Smith; Mark S. Klempner; Keith A. Reimann; Eric Krauland; Tillman U. Gerngross; Karl Dane Wittrup; Erica Ollmann Saphire; Dennis R. Burton; Pamela J. Glass; Andrew B. Ward; Laura M. Walker
Profiling the antibody response to Ebola The recent Ebola virus outbreak in West Africa illustrates the need not only for a vaccine but for potential therapies, too. One promising therapy is monoclonal antibodies that target Ebolas membrane-anchored glycoprotein (GP). Bornholdt et al. isolated and characterized 349 antibodies from a survivor of the 2014 outbreak. A large fraction showed some neutralizing activity and several were quite potent. Structural analysis revealed an important site of vulnerability on the membrane stalk region of GP. Antibodies targeting this area were therapeutically effective in Ebola virus–infected mice. Science, this issue p. 1078 Antibodies from a survivor of the 2014 outbreak bind to the membrane proximal region of the Ebola virus glycoprotein. Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.
Virology | 2010
Darci R. Smith; Keith E. Steele; Joshua D. Shamblin; Anna N. Honko; Joshua C. Johnson; Christopher Reed; Maureen Kennedy; Jennifer L. Chapman; Lisa E. Hensley
Detailed studies describing the pathogenesis of Rift Valley fever (RVF) virus (RVFV) in the mouse model are lacking. A fully characterized small animal model of RVF is needed to evaluate potential vaccines and therapeutics. In this study, we characterized the pathogenesis of RVFV throughout the disease course in mice. Infection produced high-titer viremia and demonstrated RVFV tropism for a variety of tissue and individual cell types. Overwhelming infection of hepatocytes, accompanied by apoptosis, was a major consequence of infection. The majority of mice died or were euthanatized between days 3 and 6 postinfection with severe hepatitis. The remaining mice effectively cleared virus from the liver and blood, but exhibited neuroinvasion and developed panencephalitis. In addition, we characterized a number of other virological, clinicopathological, and histopathological features of RVFV infection in mice. The mouse model therefore mimics both the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF.
The Journal of Infectious Diseases | 2007
Steven B. Bradfute; Denise R. Braun; Joshua D. Shamblin; Joan B. Geisbert; Jason Paragas; Aura Garrison; Lisa E. Hensley; Thomas W. Geisbert
BACKGROUND A striking feature of Zaire Ebola virus (ZEBOV) infection in nonhuman primates is the rapid depletion of T and NK lymphocytes by apoptosis. In a mouse model of ZEBOV infection, lymphocyte death is a prominent finding; however, the mechanism of death and the lymphocyte subsets that are targeted remain unknown. METHODS We extended the characterization of lymphocyte death in a mouse model of ZEBOV infection by evaluating lymphocytes during the course of disease, using flow cytometry, electron microscopy, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL). RESULTS B cell, CD4+ and CD8+ T cell, and NK cell counts all dropped dramatically in the blood of infected BALB/c mice, and lymphocyte death was observed in the spleen by means of TUNEL staining and in the blood by means of electron microscopy. Morphologically, lymphocyte death occurred by both classic apoptosis and apoptosis-like programmed cell death. CONCLUSIONS The early and severe loss of peripheral blood NK and CD8+ lymphocytes in ZEBOV-infected mice is similar to that seen in macaques. The morphological basis of lymphocyte death in ZEBOV-infected mice appears to be both classic apoptosis and apoptosis-like programmed cell death, although lymphocyte apoptosis in ZEBOV-infected nonhuman primates seems to occur primarily via classic apoptosis. The mouse model of ZEBOV infection may be useful for the screening of therapeutics directed against limiting lymphocyte death.
Journal of Virology | 2012
Darci R. Smith; Brian H. Bird; Bridget Lewis; Sara C. Johnston; Sarah E. McCarthy; Ashley Keeney; Miriam A. Botto; Ginger Donnelly; Joshua D. Shamblin; César G. Albariño; Stuart T. Nichol; Lisa E. Hensley
ABSTRACT Rift Valley fever (RVF) virus (RVFV) can cause severe human disease characterized by either acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. The existing nonhuman primate (NHP) model for RVF utilizes an intravenous (i.v.) exposure route in rhesus macaques (Macaca mulatta). Severe disease in these animals is infrequent, and large cohorts are needed to observe significant morbidity and mortality. To overcome these drawbacks, we evaluated the infectivity and pathogenicity of RVFV in the common marmoset (Callithrix jacchus) by i.v., subcutaneous (s.c.), and intranasal exposure routes to more closely mimic natural exposure. Marmosets were more susceptible to RVFV than rhesus macaques and experienced higher rates of morbidity, mortality, and viremia and marked aberrations in hematological and chemistry values. An overwhelming infection of hepatocytes was a major consequence of infection of marmosets by the i.v. and s.c. exposure routes. Additionally, these animals displayed signs of hemorrhagic manifestations and neurological impairment. Based on our results, the common marmoset model more closely resembles severe human RVF disease and is therefore an ideal model for the evaluation of potential vaccines and therapeutics.
Journal of Virology | 2011
Arthur J. Goff; Jennifer L. Chapman; Chad Foster; Carly Wlazlowski; Joshua D. Shamblin; Kenny Lin; Norman Kreiselmeier; Eric M. Mucker; Jason Paragas; James Lawler; Lisa E. Hensley
ABSTRACT Variola, the causative agent of smallpox, and the related monkeypox virus are both select agents that, if purposefully released, would cause public panic and social disruption. For this reason research continues in the areas of animal model and therapeutic development. Orthopoxviruses show a widely varying degree of host specificity, making development of accurate animal models difficult. In this paper, we demonstrate a novel respiratory infection technique that resulted in “classic” orthopox disease in nonhuman primates and takes the field of research one step closer to a better animal model.
Emerging Infectious Diseases | 2017
Andrew D. Haddow; Aysegul Nalca; Franco Rossi; Lynn J. Miller; Michael R. Wiley; Unai Pérez-Sautu; Samuel C. Washington; Sarah L. Norris; Suzanne E. Wollen-Roberts; Joshua D. Shamblin; Adrienne E. Kimmel; Holly A. Bloomfield; Stephanie M. Valdez; Thomas R. Sprague; Lucia M. Principe; Stephanie A. Bellanca; Stephanie S. Cinkovich; Luis Lugo-Roman; Lisa H. Cazares; William D. Pratt; Gustavo Palacios; Sina Bavari; M. Louise M. Pitt; Farooq Nasar
Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.
PLOS Neglected Tropical Diseases | 2013
Christopher Reed; Kenny Lin; Catherine Wilhelmsen; Brian M. Friedrich; Aysegul Nalca; Ashley Keeney; Ginger Donnelly; Joshua D. Shamblin; Lisa E. Hensley; Gene G. Olinger; Darci R. Smith
Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that can cause severe disease including acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. Currently, no licensed vaccine or therapeutics exist to treat this potentially deadly disease. Detailed studies describing the pathogenesis of RVFV following aerosol exposure have not been completed and candidate therapeutics have not been evaluated following an aerosol exposure. These studies are important because while mosquito transmission is the primary means for human infection, it can also be transmitted by aerosol or through mucosal contact. Therefore, we directly compared the pathogenesis of RVFV following aerosol exposure to a subcutaneous (SC) exposure in the murine model by analyzing survival, clinical observations, blood chemistry, hematology, immunohistochemistry, and virus titration of tissues. Additionally, we evaluated the effectiveness of the nucleoside analog ribavirin administered prophylactically to treat mice exposed by aerosol and SC. The route of exposure did not significantly affect the survival, chemistry or hematology results of the mice. Acute hepatitis occurred despite the route of exposure. However, the development of neuropathology occurred much earlier and was more severe in mice exposed by aerosol compared to SC exposed mice. Mice treated with ribavirin and exposed SC were partially protected, whereas treated mice exposed by aerosol were not protected. Early and aggressive viral invasion of brain tissues following aerosol exposure likely played an important role in ribavirins failure to prevent mortality among these animals. Our results highlight the need for more candidate antivirals to treat RVFV infection, especially in the case of a potential aerosol exposure. Additionally, our study provides an account of the key pathogenetic differences in RVF disease following two potential exposure routes and provides important insights into the development and evaluation of potential vaccines and therapeutics to treat RVFV infection.
Antimicrobial Agents and Chemotherapy | 2013
Eric M. Mucker; Arthur J. Goff; Joshua D. Shamblin; Douglas W. Grosenbach; Inger K. Damon; Jason M. Mehal; Robert C. Holman; Darin S. Carroll; Nadia Gallardo; Victoria A. Olson; Cody J. Clemmons; Paul N. Hudson; Dennis E. Hruby
ABSTRACT Naturally occurring smallpox has been eradicated but remains a considerable threat as a biowarfare/bioterrorist weapon (F. Fleck, Bull. World Health Organ. 81:917–918, 2003). While effective, the smallpox vaccine is currently not recommended for routine use in the general public due to safety concerns (http://www.bt.cdc.gov/agent/smallpox/vaccination). Safe and effective countermeasures, particularly those effective after exposure to smallpox, are needed. Currently, SIGA Technologies is developing the small-molecule oral drug, tecovirimat (previously known as ST-246), as a postexposure therapeutic treatment of orthopoxvirus disease, including smallpox. Tecovirimat has been shown to be efficacious in preventing lethal orthopoxviral disease in numerous animal models (G. Yang, D. C. Pevear, M. H. Davies, M. S. Collett, T. Bailey, et al., J. Virol. 79:13139–13149, 2005; D. C. Quenelle, R. M. Buller, S. Parker, K. A. Keith, D. E. Hruby, et al., Antimicrob. Agents Chemother., 51:689–695, 2007; E. Sbrana, R. Jordan, D. E. Hruby, R. I. Mateo, S. Y. Xiao, et al., Am. J. Trop. Med. Hyg. 76:768–773, 2007). Furthermore, in clinical trials thus far, the drug appears to be safe, with a good pharmacokinetic profile. In this study, the efficacy of tecovirimat was evaluated in both a prelesional and postlesional setting in nonhuman primates challenged intravenously with 1 × 108 PFU of Variola virus (VARV; the causative agent of smallpox), a model for smallpox disease in humans. Following challenge, 50% of placebo-treated controls succumbed to infection, while all tecovirimat-treated animals survived regardless of whether treatment was started at 2 or 4 days postinfection. In addition, tecovirimat treatment resulted in dramatic reductions in dermal lesion counts, oropharyngeal virus shedding, and viral DNA circulating in the blood. Although clinical disease was evident in tecovirimat-treated animals, it was generally very mild and appeared to resolve earlier than in placebo-treated controls that survived infection. Tecovirimat appears to be an effective smallpox therapeutic in nonhuman primates, suggesting that it is reasonably likely to provide therapeutic benefit in smallpox-infected humans.
Viruses | 2015
John Trefry; Wollen Se; Nasar F; Joshua D. Shamblin; Kern Sj; Bearss Jj; Jefferson Ma; Taylor B. Chance; Kugelman; Ladner Jt; Honko An; Kobs Dj; Wending Mq; Sabourin Cl; Pratt Wd; Palacios Gf; Pitt Ml
Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.
Collaboration
Dive into the Joshua D. Shamblin's collaboration.
United States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputs