Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua D. Williams is active.

Publication


Featured researches published by Joshua D. Williams.


Journal of Controlled Release | 2003

Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors.

Joshua D. Williams; Rachael Lansdown; Robert H. Sweitzer; Marek Romanowski; Rachel Yvonne Labell; Rajan Ramaswami; Evan C. Unger

Camptothecin-based drugs, because of their poor solubility and labile lactone ring, pose challenges for drug delivery. The purpose of this research was to develop a nanoparticle delivery system for camptotheca alkaloids. After initial investigations SN-38 was selected as the candidate camptotheca alkaloid for further development. Nanoparticles comprising SN-38, phospholipids and polyethylene glycol were developed and studied in vitro and in vivo. The SN-38 formulations were stable in human serum albumin and high lactone concentrations were observed even after 3 h. In vivo studies in nude mice showed prolonged half-life of the active (lactone form) drug in whole blood and increased efficacy compared to Camptosar in a mouse xenograft tumor model.


Experimental Dermatology | 2007

A topical lipophilic niacin derivative increases NAD, epidermal differentiation and barrier function in photodamaged skin

Elaine L. Jacobson; Hyuntae Kim; Moonsun Kim; Joshua D. Williams; Donna L. Coyle; W. Russell Coyle; Gary Grove; Ronald L. Rizer; M. Suzanne Stratton; Myron K. Jacobson

Abstract:  The effects of myristyl nicotinate (MN), a nicotinic acid derivative designed to deliver nicotinic acid to skin without vasodilatation, on subjects with photodamaged skin have been studied. MN increased skin cell nicotinamide adenine dinucleotide (NAD) by 25% (P = 0.001) demonstrating effective delivery of nicotinic acid to skin. Relative to placebo, MN treatment of photodamaged facial skin increased stratum corneum thickness by approximately 70% (P = 0.0001) and increased epidermal thickness by approximately 20% (P = 0.001). In two separate studies, MN treatment increased rates of epidermal renewal by 6% (P = 0.003) to 11% (P = 0.001) and increased the minimal erythemal dose by 8.9 (P = 0.07) and 10% (P = 0.05) relative to placebo. MN treatment resulted in reductions in the rates of transepidermal water loss (TEWL) of approximately 20% relative to placebo on cheeks (P = 0.012) and arms (P = 0.017) of study subjects. Results of a tape stripping challenge before and after MN treatment demonstrated a significant correlation (P = 0.03) between increased skin NAD content and resistance to changes in TEWL for MN treated but not placebo subjects. Rates of TEWL changed more rapidly and to a greater extent in atopic subjects compared with normal subjects. The results indicate that MN enhances epidermal differentiation and barrier function in skin, suggesting that this method of nicotinic acid delivery may prove useful in limiting progression of actinic skin damage and possibly in treating other conditions involving skin barrier impairment.


Journal of Investigative Dermatology | 2015

The Tryptophan-Derived Endogenous Aryl Hydrocarbon Receptor Ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA Photosensitizer in Epidermal Keratinocytes

Sophia L. Park; Rebecca Justiniano; Joshua D. Williams; Christopher M. Cabello; Shuxi Qiao; Georg T. Wondrak

Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin.


Journal of Photochemistry and Photobiology B-biology | 2010

Photobiological implications of folate depletion and repletion in cultured human keratinocytes.

Joshua D. Williams; Myron K. Jacobson

Folate nutrition is critical in humans and a high dietary folate intake is associated with a diminished risk of many types of cancer. Both synthetic folic acid and the most biologically abundant extracellular reduced folate, 5-methyltetrahydrofolate, are degraded under conditions of ultraviolet radiation (UVR) exposure. Skin is a proliferative tissue with increased folate nutrient demands due to a dependence upon continuous epidermal cell proliferation and differentiation to maintain homeostasis. Regions of skin are also chronically exposed to UVR, which penetrates to the actively dividing basal layer of the epidermis, increasing the folate nutrient demands in order to replace folate species degraded by UVR exposure and to supply the folate cofactors required for repair of photo-damaged DNA. Localized folate deficiencies of skin are a likely consequence of UVR exposure. We report here a cultured keratinocyte model of folate deficiency that has been applied to examine possible effects of folate nutritional deficiencies in skin. Utilizing this model, we were able to quantify the concentrations of key intracellular folate species during folate depletion and repletion. We investigated the hypotheses that the genomic instability observed under conditions of folate deficiency in other cell types extends to skin, adversely effecting cellular capacity to handle UVR insult and that optimizing folate levels in skin is beneficial in preventing or repairing the pro-carcinogenic effects of UVR exposure. Folate restriction leads to rapid depletion of intracellular reduced folates resulting in S-phase growth arrest, increased levels of inherent DNA damage, and increased uracil misincorporation into DNA, without a significant losses in overall cellular viability. Folate depleted keratinocytes were sensitized toward UVR induced apoptosis and displayed a diminished capacity to remove DNA breaks resulting from both photo and oxidative DNA damage. Thus, folate deficiency creates a permissive environment for genomic instability, an early event in the process of skin carcinogenesis. The effects of folate restriction, even in severely depleted, growth-arrested keratinocytes, were reversible by repletion with folic acid. Overall, these results indicate that skin health can be positively influenced by optimal folate nutriture.


Journal of Photochemistry and Photobiology B-biology | 2014

Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue.

Joshua D. Williams; Yira Bermudez; Sophia L. Park; Steven P. Stratton; Koji Uchida; Craig A. Hurst; Georg T. Wondrak

Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored.


Sub-cellular biochemistry | 2012

Folate in Skin Cancer Prevention

Joshua D. Williams; Elaine L. Jacobson; Hyuntae Kim; Moonsun Kim; Myron K. Jacobson

Skin, the largest, most exposed organ of the body, provides a protective interface between humans and the environment. One of its primary roles is protection against exposure to sunlight, a major source of skin damage where the UV radiation (UVR) component functions as a complete carcinogen. Melanin pigmentation and the evolution of dark skin is an adaptive protective mechanism against high levels of UVR exposure. Recently, the hypothesis that skin pigmentation balances folate preservation and Vitamin D production has emerged. Both micronutrients are essential for reproductive success. Photodegradation of bioactive folates suggests a mechanism for the increased tendency of populations of low melanin pigmentation residing in areas of high UV exposure to develop skin cancers. Folate is proposed as a cancer prevention target for its role in providing precursors for DNA repair and replication, as well as its ability to promote genomic integrity through the generation of methyl groups needed for control of gene expression. The cancer prevention potential of folate has been demonstrated by large-scale epidemiological and nutritional studies indicating that decreased folate status increases the risk of developing certain cancers. While folate deficiency has been extensively documented by analysis of human plasma, folate status within skin has not been widely investigated. Nevertheless, inefficient delivery of micronutrients to skin and photolysis of folate argue that documented folate deficiencies will be present if not exacerbated in skin. Our studies indicate a critical role for folate in skin and the potential to protect sun exposed skin by effective topical delivery as a strategy for cancer prevention.


ACS Nano | 2014

Focal Activation of Cells by Plasmon Resonance Assisted Optical Injection of Signaling Molecules

Gabriel V. Orsinger; Joshua D. Williams; Marek Romanowski

Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca2+) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca2+ concentration within the injected cell initiating the propagation of a Ca2+ wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca2+ wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research.


Photochemistry and Photobiology | 2017

The B6-vitamer Pyridoxal is a Sensitizer of UVA-induced Genotoxic Stress in Human Primary Keratinocytes and Reconstructed Epidermis

Rebecca Justiniano; Joshua D. Williams; Jessica Perer; Anh Hua; Jessica L. Lesson; Sophia L. Park; Georg T. Wondrak

UVA‐driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3‐hydroxypyridine‐derived chromophores including B6‐vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA‐induced photooxidative stress in human skin cells. Here, we report that the B6‐vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA‐induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ‐H2AX (Ser139)], comet analysis indicated the formation of Fpg‐sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA‐driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6‐vitamers.


Proceedings of SPIE | 2014

Intracellular light-induced release of signaling molecules from gold-coated liposomes

Gabriel V. Orsinger; Joshua D. Williams; Marek Romanowski

The combination of laser light and composite nanovesicles enables unique opportunities for precise delivery to, and ondemand release of molecular compounds within, single cells at high spatiotemporal resolution. Here, we demonstrate precise delivery and intracellular release of molecules from gold-coated liposomes via near infrared (NIR) light. The plasmon resonant gold shell provides a light-sensitive trigger for on-demand content release from thermosensitive liposomes. Two demonstrations of intracellular delivery and release from gold-coated liposomes are presented here. The first example uses microinjection to preload gold-coated liposomes into a single cell, followed by exposure to onresonant NIR laser light to trigger release of a fluorescent nuclear dye intracellularly. In the second delivery and release demonstration, gold-coated liposomes encapsulating inositol trisphosphate (IP3), a ubiquitous secondary messenger in cell signaling cascades, passively accumulate within cells via endocytosis. Exposure to on-resonant NIR laser wavelength of light induces rapid release of IP3 from the intracellular liposomes and subsequent activation of Ca2+ signaling at a single cell, monitored by changes in fluorescence intensity of a Ca 2+-sensitive dye.


Archive | 2013

Folate Nutrition in Skin Health and Skin Cancer Prevention

Yira Bermudez; Katharine Cordova; Joshua D. Williams

This chapter will discuss the role of folate nutrition in the unique environment of human skin. The folates are a family of structurally similar, water-soluble, B vitamins, which have been well documented as vital in promoting human health and preventing disease. Optimized folate nutrient levels support many biochemical processes important for the maintenance and function of healthy skin. This importance is underscored by potential links between folate deficiency and psoriasis, vitiligo, exfoliative dermatitis, glossitis, and skin cancers. Human skin is particularly prone to the development of carcinomas. It is established that skin cancer risk correlates with exposure to the complete carcinogen, ultraviolet radiation (UVR) from sunlight. Total avoidance of solar exposure is impractical.

Collaboration


Dive into the Joshua D. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge