Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Denham is active.

Publication


Featured researches published by Joshua Denham.


PLOS ONE | 2013

Longer Leukocyte Telomeres Are Associated with Ultra- Endurance Exercise Independent of Cardiovascular Risk Factors

Joshua Denham; Christopher P. Nelson; Brendan J. O’Brien; Scott Nankervis; Jack Harvey; Francine Z. Marques; Veryan Codd; Ewa Zukowska-Szczechowska; Nilesh J. Samani; Maciej Tomaszewski; Fadi J. Charchar

Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners’ and 56 apparently healthy males’ leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41; β = 0.40, SE = 0.10, P = 1.4×10−4) in age-adjusted analysis. The difference remained statistically significant after adjustment for cardiovascular risk factors (P = 2.2×10−4). The magnitude of this association translates into 16.2±0.26 years difference in biological age and approximately 324–648bp difference in leukocyte telomere length between ultra-marathon runners and healthy controls. Neither traditional cardiovascular risk factors nor markers of inflammation/adhesion molecules explained the difference in leukocyte telomere length between ultra-marathon runners and controls. Taken together these data suggest that regular engagement in ultra-endurance aerobic exercise attenuates cellular aging.


Sports Medicine | 2014

Exercise: Putting Action into Our Epigenome

Joshua Denham; Francine Z. Marques; Brendan J. O’Brien; Fadi J. Charchar

Most human phenotypes are influenced by a combination of genomic and environmental factors. Engaging in regular physical exercise prevents many chronic diseases, decreases mortality risk and increases longevity. However, the mechanisms involved are poorly understood. The modulating effect of physical (aerobic and resistance) exercise on gene expression has been known for some time now and has provided us with an understanding of the biological responses to physical exercise. Emerging research data suggest that epigenetic modifications are extremely important for both development and disease in humans. In the current review, we summarise findings on the effect of exercise on epigenetic modifications and their effects on gene expression. Current research data suggest epigenetic modifications (DNA methylation and histone acetylation) and microRNAs (miRNAs) are responsive to acute aerobic and resistance exercise in brain, blood, skeletal and cardiac muscle, adipose tissue and even buccal cells. Six months of aerobic exercise alters whole-genome DNA methylation in skeletal muscle and adipose tissue and directly influences lipogenesis. Some miRNAs are related to maximal oxygen consumption (VO2max) and VO2max trainability, and are differentially expressed amongst individuals with high and low VO2max. Remarkably, miRNA expression profiles discriminate between low and high responders to resistance exercise (miR-378, -26a, -29a and -451) and correlate to gains in lean body mass (miR-378). The emerging field of exercise epigenomics is expected to prosper and additional studies may elucidate the clinical relevance of miRNAs and epigenetic modifications, and delineate mechanisms by which exercise confers a healthier phenotype and improves performance.


Epigenomics | 2015

Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans

Joshua Denham; Brendan J. O'Brien; Jack Harvey; Fadi J. Charchar

AIM DNA methylation programs gene expression and is involved in numerous biological processes. Accumulating evidence supports transgenerational inheritance of DNA methylation changes in mammals via germ cells. Our aim was to determine the effect of exercise on sperm DNA methylation. MATERIALS & METHODS Twenty-four men were recruited and assigned to an exercise intervention or control group. Clinical parameters were measured and sperm samples were donated by subjects before and after the 3-month time-period. Mature sperm global and genome-wide DNA methylation was assessed using an ELISA assay and the 450K BeadChip (Illumina). RESULTS Global and genome-wide sperm DNA methylation was altered after 3 months of exercise training. DNA methylation changes occurred in genes related to numerous diseases such as schizophrenia and Parkinsons disease. CONCLUSIONS Our study provides the first evidence showing exercise training reprograms the sperm methylome. Whether these DNA methylation changes are inherited to future generations warrants attention.


Frontiers in Genetics | 2016

Muscle-Enriched MicroRNAs Isolated from Whole Blood Are Regulated by Exercise and Are Potential Biomarkers of Cardiorespiratory Fitness

Joshua Denham; Priscilla R. Prestes

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness.


Journal of Applied Physiology | 2016

Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres

Joshua Denham; Brendan J. O'Brien; Priscilla R. Prestes; Nicholas J. Brown; Fadi J. Charchar

Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative V̇O(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits.


Acta Physiologica | 2018

Exercise and epigenetic inheritance of disease risk

Joshua Denham

Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise‐induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.


International Journal of Sports Medicine | 2018

Sprint Interval Training Decreases Circulating MicroRNAs Important for Muscle Development

Joshua Denham; Adrian Gray; John Scott-Hamilton; Amanda D. Hagstrom

Small non-coding RNAs, such as microRNAs (miRNAs), have emerged as powerful post-transcriptional regulators of gene expression that play important roles in many developmental and biological processes. In this study, we assessed the abundance of circulating microRNAs important for skeletal muscle and heart adaptations to exercise (miR-1, miR-133a, miR-133b and miR-486), following acute exercise and short-term sprint interval training (SIT). Twenty-eight individuals completed four all-out efforts on a cycle ergometer, and donated blood before and 30 min after the cessation of exercise. A subset of 10 untrained men completed 4-6 efforts of SIT, three times a week for 6 weeks, and donated resting blood samples before and after the intervention. MiRNA TaqMan qPCR was performed and whilst no changes were observed after a single session of SIT (all p>0.05), the 6-wk SIT intervention significantly reduced the whole blood content of all four miRNAs (mean fold-changes: 0.37-0.48, all p<0.01). Our data suggests that circulating miRNAs are responsive to short-term SIT and could have roles in SIT-induced health and performance adaptations. Further work is required to establish whether circulating miRNAs could serve as biomarkers for predicting exercise training responses and monitoring exercise interventions.


International Journal of Sports Medicine | 2018

microRNAs in High and Low Responders to Resistance Training in Breast Cancer Survivors

Amanda D. Hagstrom; Joshua Denham

Accounting for one in three cancer diagnoses, breast cancer is the second most commonly diagnosed cancer in women. Exercise has a well-accepted role in the multi-disciplinary approach to rehabilitating breast cancer survivors. Despite the many known benefits of resistance training on women recovering from breast cancer, the molecular mechanisms are poorly understood. MicroRNAs are small non-coding RNAs that have crucial roles in growth and development. Here, we analysed the abundance of 9 miRNAs, with known roles in muscle physiology and some linked to cancer, in serum samples from 24 breast cancer survivors before and after a 16-week resistance training or usual care intervention. The resistance training group completed supervised thrice-weekly training. miRNA abundance was assessed before and after the intervention period using qPCR. There were no statistically significant changes in any of the miRNAs between groups after the intervention period (all p>0.05). After assessing miRNA abundance in context with high and low responders to resistance training, we observed that relative to low responders, high responders exhibited increased miR-133a-3p and a borderline statistically significant increase in miR-370-3p. Findings from our controlled study indicate the diverse interindividual miRNA responses to resistance training and reveal a discordant regulation between high and low responders.


Physiological Reports | 2018

Small non-coding RNAs are altered by short-term sprint interval training in men

Joshua Denham; Adrian Gray; John Scott-Hamilton; Amanda D. Hagstrom; Aron J. Murphy

Small non‐coding RNAs (ncRNAs) are emerging as important molecules for normal biological processes and are deregulated in disease. Exercise training is a powerful therapeutic strategy that prevents cardiometabolic disease and improves cardiorespiratory fitness and performance. Despite the known systemic health benefits of exercise training, the underlying molecular mechanisms are incompletely understood. Recent evidence suggests a role for epigenetic mechanisms, such as microRNAs, but whether other small ncRNAs are modulated by chronic exercise training is unknown. Here, we used small RNA sequencing to explore whether sprint interval training (SIT) controls the abundance of circulating small ncRNAs in human whole blood samples. Ten healthy men performed SIT three times a week for 6 weeks. After training, subjects showed marked improvements in maximal oxygen consumption and cycling performance with concurrent changes to the abundance of diverse species of circulating small ncRNAs (n = 1266 small ncRNAs, n = 13 microRNAs, q < 0.05). Twelve microRNAs altered by 6 weeks of SIT were ubiquitously expressed microRNAs and two regulated important signaling pathways, including p53, thyroid hormone and cell cycle signaling. MicroRNAs altered by 6 weeks of SIT were unchanged after a single session of SIT (n = 24, all P > 0.05). Relative to older individuals, younger subjects exhibited an increased acute SIT‐induced fold change in miR‐1301‐3p (P = 0.02) – a microRNA predicted to target mRNAs involved in alternative splicing, phosphoprotein and chromosomal rearrangement processes (all P < 0.001). Our findings indicate many species of circulating small ncRNAs are modulated by exercise training and that they could control signaling pathways responsible for health benefits achieved from exercise.


Nutrition | 2018

Time-restricted feeding influences immune responses without compromising muscle performance in older men

Maha Gasmi; Maha Sellami; Joshua Denham; Johnny Padulo; Goran Kuvačić; Walid Selmi; Riadh Khalifa

OBJECTIVE This study examined the effect of 12 wk of time-restricted feeding (TRF) on complete blood cell counts, natural killer cells, and muscle performance in 20- and 50-year-old men. METHODS Forty active and healthy participants were randomly divided into young experimental, young control, aged experimental, and aged control group. Experimental groups participated in TRF. Before (P1) and after (P2) TRF, participants performed a maximal exercise test to quantify muscle power. Resting venous blood samples were collected for blood count calculation. RESULTS No changes were identified in muscle power in all groups after TRF (P > 0.05). At P1, red cells, hemoglobin, and hematocrit were significantly higher in young participants compared with elderly participants (P < 0.05). At P2, this age effect was not found in red cells between the young experimental group and the aged experimental group (P > 0.05). At P1, white blood cells and neutrophils were significantly higher in young participants compared with elderly participants (P < 0.05). At P2, only neutrophils decreased significantly (P < 0.05) in experimental groups without significant (P > 0.05) difference among them. Lymphocytes decreased significantly in the aged experimental group at P2 (P < 0.05), whereas NKCD16+ and NKCD56+ decreased significantly in experimental groups at P2 (P < 0.05). TRF had no effect on CD3, CD4+, and CD8+ levels (P > 0.05). CONCLUSION TRF decreases hematocrit, total white blood cells, lymphocytes, and neutrophils in young and older men. TRF may be effective in preventing inflammation by decreasing natural killer cells. As such, TRF could be a lifestyle strategy to reduce systemic low-grade inflammation and age-related chronic diseases linked to immunosenescence, without compromising physical performance.

Collaboration


Dive into the Joshua Denham's collaboration.

Top Co-Authors

Avatar

Fadi J. Charchar

Federation University Australia

View shared research outputs
Top Co-Authors

Avatar

Brendan J. O’Brien

Federation University Australia

View shared research outputs
Top Co-Authors

Avatar

Brendan J. O'Brien

Federation University Australia

View shared research outputs
Top Co-Authors

Avatar

Francine Z. Marques

Federation University Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priscilla R. Prestes

Federation University Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brown Nj

Federation University Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge