Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Holcomb is active.

Publication


Featured researches published by Joshua Holcomb.


International Journal of Molecular Sciences | 2015

Structure and function of SET and MYND domain-containing proteins.

Nicholas Spellmon; Joshua Holcomb; Laura Trescott; Nualpun Sirinupong; Zhe Yang

SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.


Journal of Molecular Biology | 2014

Structural insights into estrogen receptor α methylation by histone methyltransferase SMYD2, a cellular event implicated in estrogen signaling regulation

Yuanyuan Jiang; Laura Trescott; Joshua Holcomb; Xi Zhang; Joseph S. Brunzelle; Nualpun Sirinupong; Xiaobing Shi; Zhe Yang

Estrogen receptor (ER) signaling plays a pivotal role in many developmental processes and has been implicated in numerous diseases including cancers. We recently showed that direct ERα methylation by the multi-specificity histone lysine methyltransferase SMYD2 regulates estrogen signaling through repressing ERα-dependent transactivation. However, the mechanism controlling the specificity of the SMYD2-ERα interaction and the structural basis of SMYD2 substrate binding diversity are unknown. Here we present the crystal structure of SMYD2 in complex with a target lysine (Lys266)-containing ERα peptide. The structure reveals that ERα binds SMYD2 in a U-shaped conformation with the binding specificity determined mainly by residues C-terminal to the target lysine. The structure also reveals numerous intrapeptide contacts that ensure shape complementarity between the substrate and the active site of the enzyme, thereby likely serving as an additional structural determinant of substrate specificity. In addition, comparison of the SMYD2-ERα and SMYD2-p53 structures provides the first structural insight into the diverse nature of SMYD2 substrate recognition and suggests that the broad specificity of SMYD2 is achieved by multiple molecular mechanisms such as distinct peptide binding modes and the intrinsic dynamics of peptide ligands. Strikingly, a novel potentially SMYD2-specific polyethylene glycol binding site is identified in the CTD domain, implicating possible functions in extended substrate binding or protein-protein interactions. Our study thus provides the structural basis for the SMYD2-mediated ERα methylation, and the resulting knowledge of SMYD2 substrate specificity and target binding diversity could have important implications in selective drug design against a wide range of ERα-related diseases.


Biochemical and Biophysical Research Communications | 2014

Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation.

Joshua Holcomb; Yuanyuan Jiang; Guorong Lu; Laura Trescott; Joseph S. Brunzelle; Nualpun Sirinupong; Chunying Li; Anjaparavanda P. Naren; Zhe Yang

The formation of CFTR-NHERF2-LPA2 macromolecular complex in airway epithelia regulates CFTR channel function and plays an important role in compartmentalized cAMP signaling. We previously have shown that disruption of the PDZ-mediated NHERF2-LPA2 interaction abolishes the LPA inhibitory effect and augments CFTR Cl(-) channel activity in vitro and in vivo. Here we report the first crystal structure of the NHERF2 PDZ1 domain in complex with the C-terminal LPA2 sequence. The structure reveals that the PDZ1-LPA2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four LPA2 residues contributing to specific interactions. Comparison of the PDZ1-LPA2 structure to the structure of PDZ1 in complex with a different peptide provides insights into the diverse nature of PDZ1 substrate recognition and suggests that the conformational flexibility in the ligand binding pocket is involved in determining the broad substrate specificity of PDZ1. In addition, the structure reveals a small surface pocket adjacent to the ligand-binding site, which may have therapeutic implications. This study provides an understanding of the structural basis for the PDZ-mediated NHERF2-LPA2 interaction that could prove valuable in selective drug design against CFTR-related human diseases.


Stem Cell Research | 2015

A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis

Yuning Hou; Yanning Wu; Shukkur M. Farooq; Xiaoqing Guan; Shuo Wang; Yanxia Liu; Jacob J. Oblak; Joshua Holcomb; Yuanyuan Jiang; Robert M. Strieter; Robert D. Lasley; Ali S. Arbab; Fei Sun; Chunying Li; Zhe Yang

Bone marrow-derived endothelial progenitor cells (EPCs) contribute to neovessel formation in response to growth factors, cytokines, and chemokines. Chemokine receptor CXCR2 and its cognate ligands are reported to mediate EPC recruitment and angiogenesis. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif which has been reported to modulate cellular signaling and functions. Here we examined the potential role of the PDZ motif in CXCR2-mediated EPC motility and angiogenesis. We observed that exogenous CXCR2 C-tail significantly inhibited in vitro EPC migratory responses and angiogenic activities, as well as in vivo EPC angiogenesis. However, the CXCR2 C-tail that lacks the PDZ motif (ΔTTL) did not cause any significant changes of these functions in EPCs. In addition, using biochemical assays, we demonstrated that the PDZ scaffold protein NHERF1 specifically interacted with CXCR2 and its downstream effector, PLC-β3, in EPCs. This suggests that NHERF1 might cluster CXCR2 and its relevant signaling molecules into a macromolecular signaling complex modulating EPC cellular functions. Taken together, our data revealed a critical role of a PDZ-based CXCR2 macromolecular complex in EPC homing and angiogenesis, suggesting that targeting this complex might be a novel and effective strategy to treat angiogenesis-dependent diseases.


Biochemical and Biophysical Research Communications | 2014

Crystallographic analysis of NHERF1–PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer

Yuanyuan Jiang; Shuo Wang; Joshua Holcomb; Laura Trescott; Xiaoqing Guan; Yuning Hou; Joseph S. Brunzelle; Nualpun Sirinupong; Chunying Li; Zhe Yang

The formation of CXCR2-NHERF1-PLCβ3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2-PLCβ3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro and in vivo. Here we report the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal PLCβ3 sequence. The structure reveals that the PDZ1-PLCβ3 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four PLCβ3 residues contributing to specific interactions. We also show that PLCβ3 can bind both NHERF1 PDZ1 and PDZ2 in pancreatic cancer cells, consistent with the observation that the peptide binding pockets of these PDZ domains are highly structurally conserved. This study provides an understanding of the structural basis for the PDZ-mediated NHERF1-PLCβ3 interaction that could prove valuable in selective drug design against CXCR2-related cancers.


Biochemical and Biophysical Research Communications | 2014

Crystal structure of the NHERF1 PDZ2 domain in complex with the chemokine receptor CXCR2 reveals probable modes of PDZ2 dimerization.

Joshua Holcomb; Yuanyuan Jiang; Xiaoqing Guan; Laura Trescott; Guorong Lu; Yuning Hou; Shuo Wang; Joseph S. Brunzelle; Nualpun Sirinupong; Chunying Li; Zhe Yang

The formation of CXCR2-NHERF1-PLCβ2 macromolecular complex in neutrophils regulates CXCR2 signaling and plays a key role in neutrophil chemotaxis and transepithelial neutrophilic migration. However, NHERF1 by itself, with only two PDZ domains, has a limited capacity in scaffolding the multiprotein-complex formation. Here we report the crystal structure of the NHERF1 PDZ2 domain in complex with the C-terminal CXCR2 sequence. The structure reveals that the PDZ2-CXCR2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four CXCR2 residues contributing to specific interactions. The structure also reveals two probable modes of PDZ2 dimerization where the two canonical ligand-binding pockets are well separated and orientated in a unique parallel fashion. This study provides not only the structural basis for the PDZ-mediated NHERF1-CXCR2 interaction, but also an additional example of how PDZ domains may dimerize, which both could prove valuable in understanding NHERF1 complex-scaffolding function in neutrophils.


Biochemical and Biophysical Research Communications | 2017

Structural basis of PDZ-mediated chemokine receptor CXCR2 scaffolding by guanine nucleotide exchange factor PDZ-RhoGEF.

Nicholas Spellmon; Joshua Holcomb; Andrea Niu; Vishakha Choudhary; Xiaonan Sun; Yingxue Zhang; Junmei Wan; Maysaa Doughan; Stephanie Hayden; Fatme Hachem; Joseph S. Brunzelle; Chunying Li; Zhe Yang

The CXC chemokine receptor 2 (CXCR2) is a G protein coupled receptor mediating interleukin-8 chemotactic signaling and plays an important role in neutrophil mobility and tumor migration. However, efficient CXCR2 signaling requires PDZ domain-mediated scaffolding of signaling complexes at the plasma membrane and functional coupling of the signaling to specific downstream signaling pathways, in which only one PDZ protein has been characterized to interact with CXCR2. Here, we identified five novel CXCR2-binding PDZ-containing proteins, among which PDZ-RhoGEF is of particular interest because this PDZ and RGS-containing guanine nucleotide exchange factor (GEF) is also involved in cell signaling and mobility. To reveal the molecular basis of the interaction, we solved the crystal structure of PDZ-RhoGEF PDZ domain in complex with the CXCR2 C-terminal PDZ binding motif. The structure reveals that the PDZ-CXCR2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four CXCR2 residues contributing to specific interactions. Structural comparison of CXCR2-binding PDZ domains and PDZ-RhoGEF PDZ bound with different ligands reveals PDZ- and ligand-specific interactions that may underlie the ability of promiscuous CXCR2 binding by different PDZ domains and PDZ binding promiscuity. The structure also reveals an unexpected asymmetric disulfide bond-linked PDZ dimer that allows simultaneous parallel binding of CXCR2 to two PDZ domains. This study provides not only the structural basis for PDZ-mediated CXCR2-PDZ-RhoGEF interaction, but also a new mode of PDZ dimerization, which both could prove valuable in understanding signaling complex scaffolding in CXCR2 signaling and coupling to specific signaling pathways.


biophysics 2017, Vol. 4, Pages 1-18 | 2016

New open conformation of SMYD3 implicates conformational selection and allostery

Nicholas Spellmon; Xiaonan Sun; Wen Xue; Joshua Holcomb; Srinivas Chakravarthy; Weifeng Shang; Brian F.P. Edwards; Nualpun Sirinupong; Chunying Li; Zhe Yang

SMYD3 plays a key role in cancer cell viability, adhesion, migration and invasion. SMYD3 promotes formation of inducible regulatory T cells and is involved in reducing autoimmunity. However, the nearly “closed” substrate-binding site and poor in vitro H3K4 methyltransferase activity have obscured further understanding of this oncogenically related protein. Here we reveal that SMYD3 can adopt an “open” conformation using molecular dynamics simulation and small-angle X-ray scattering. This ligand-binding-capable open state is related to the crystal structure-like closed state by a striking clamshell-like inter-lobe dynamics. The two states are characterized by many distinct structural and dynamical differences and the conformational transition pathway is mediated by a reversible twisting motion of the C-terminal domain (CTD). The spontaneous transition from the closed to open states suggests two possible, mutually non-exclusive models for SMYD3 functional regulation and the conformational selection mechanism and allostery may regulate the catalytic or ligand binding competence of SMYD3. This study provides an immediate clue to the puzzling role of SMYD3 in epigenetic gene regulation.


Methods of Molecular Biology | 2016

Purification of Histone Lysine Methyltransferase SMYD2 and Co-Crystallization with a Target Peptide from Estrogen Receptor α

Yuanyuan Jiang; Joshua Holcomb; Nicholas Spellmon; Zhe Yang

Methylation of estrogen receptor α by the histone lysine methyltransferase SMYD2 regulates ERα chromatin recruitment and its target gene expression. This protocol describes SMYD2 purification and crystallization of SMYD2 in complex with an ERα peptide. Recombinant SMYD2 is overexpressed in Escherichia coli cells. After release from the cells by French Press, SMYD2 is purified to apparent homogeneity with multiple chromatography methods. Nickel affinity column purifies SMYD2 based on specific interaction of its 6×His tag with the bead-immobilized nickel ions. Desalting column is used for protein buffer exchange. Gel filtration column purifies SMYD2 based on molecular size. The entire purification process is monitored and analyzed by SDS-polyacrylamide gel electrophoresis. Crystallization of SMYD2 is performed with the hanging drop vapor diffusion method. Crystals of the SMYD2-ERα peptide complex are obtained by microseeding using seeding bead. This method can give rise to large size of crystals which are suitable for X-ray diffraction data collection. X-ray crystallographic study of the SMYD2-ERα complex can provide structural insight into posttranslational regulation of ERα signaling.


PLOS ONE | 2018

SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains

Joshua Holcomb; Maysaa Doughan; Nicholas Spellmon; Brianne E. Lewis; Emerson Perry; Yingxue Zhang; Lindsey Nico; Junmei Wan; Srinivas Chakravarthy; Weifeng Shang; Qing Miao; Timothy L. Stemmler; Zhe Yang

The Nogo-B receptor (NgBR) is involved in oncogenic Ras signaling through directly binding to farnesylated Ras. It recruits farnesylated Ras to the non-lipid-raft membrane for interaction with downstream effectors. However, the cytosolic domain of NgBR itself is only partially folded. The lack of several conserved secondary structural elements makes this domain unlikely to form a complete farnesyl binding pocket. We find that inclusion of the extracellular and transmembrane domains that contain additional conserved residues to the cytosolic region results in a well folded protein with a similar size and shape to the E.coli cis-isoprenyl transferase (UPPs). Small Angle X-ray Scattering (SAXS) analysis reveals the radius of gyration (Rg) of our NgBR construct to be 18.2 Å with a maximum particle dimension (Dmax) of 61.0 Å. Ab initio shape modeling returns a globular molecular envelope with an estimated molecular weight of 23.0 kD closely correlated with the calculated molecular weight. Both Kratky plot and pair distribution function of NgBR scattering reveal a bell shaped peak which is characteristic of a single globularly folded protein. In addition, circular dichroism (CD) analysis reveals that our construct has the secondary structure contents similar to the UPPs. However, this result does not agree with the currently accepted topological orientation of NgBR which might partition this construct into three separate domains. This discrepancy suggests another possible NgBR topology and lends insight into a potential molecular basis of how NgBR facilitates farnesylated Ras recruitment.

Collaboration


Dive into the Joshua Holcomb's collaboration.

Top Co-Authors

Avatar

Zhe Yang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Chunying Li

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nualpun Sirinupong

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Wang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Xiaobing Shi

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge