Joshua J. Avila
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua J. Avila.
Clinical Interventions in Aging | 2011
elizabeth A Valente; Megan E. Sheehy; Joshua J. Avila; Julie A. Gutierres; Matthew J. Delmonico; Ingrid E. Lofgren
Objectives The aim of the study was to examine the additive effect of resistance training (RT) to a dietary education (DE) intervention on emerging coronary heart disease (CHD) risk factors, concentration of apolipoproteins B (apoB) and A-I (apoA-I), and Dietary Approaches to Stop Hypertension (DASH) Diet Index scores in overweight and obese older adults. Patients and methods This was an ancillary study of a randomized clinical trial held in the Fall of 2008 at the University of Rhode Island. Participants were overweight or obese subjects (mean body mass index [BMI] of 31.7 kg/m2) randomized into two groups, one participating in DE only (n = 12) and the other participating in DE plus RT (DERT) (n = 15). The intervention involved all subjects participating in 30 minutes of DE per week for 10 weeks. Subjects in the DERT group participated in an additional 40 minutes of RT three times per week for 10 weeks. Measurements taken were anthropometric (height, weight, waist circumference, and body composition using the BOD POD® [Body Composition System, v 2.14; Life Measurement Instruments, Concord, CA]), clinical (blood pressure), and biochemical (lipid profile and apoB and apoA-I concentrations), and the DASH Diet Index was used to measure diet quality. Results 27 subjects (11 males, 16 females), with a mean age of 66.6 ± 4.3 years, were included in analyses. The DERT subjects had significantly better triacylglycerol and apoB concentrations and DASH Diet Index scores than the DE subjects post-intervention. Improvements were seen within the DE group in energy intake, fat-free mass, and systolic blood pressure and within the DERT group in body weight, percentage of body fat, BMI, diastolic blood pressure, and oxidized low-density lipoprotein (all P < 0.05). Conclusion The addition of RT effectively reduced CHD risk factors, body composition, and diet quality in overweight and obese older adults; DERT was more effective than DE alone in improving DASH Diet Index scores and lowering apoB concentrations but was not more effective in increasing apoA-I concentrations. Future research is needed to determine if apolipoproteins are superior to lipoprotein cholesterol concentrations in predicting CHD risk.
PLOS ONE | 2015
Michael P. Massett; Joshua J. Avila; Seung Kyum Kim
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.
Frontiers in Physiology | 2017
Joshua J. Avila; Seung Kyum Kim; Michael P. Massett
Changes in cardiorespiratory fitness in response to a standardized exercise training protocol differ substantially between individuals. Results from cross-sectional, twin, and family studies indicate genetics contribute to individual differences in both baseline exercise capacity and the response to training. Exercise capacity and responses to training also vary between inbred strains of mice. However, such studies have utilized a limited number of inbred strains. Therefore, the aim of this study was to characterize exercise-training responses in a larger number of genetically diverse strains of inbred mice and estimate the contribution of genetic background to exercise training responses. Eight-week old male mice from 24 inbred strains (n = 4–10/strain) performed a graded exercise test before and after 4 weeks of exercise training. Before training, exercise capacity was significantly different between strains when expressed as time (range = 21–42 min) and work performed (range = 0.42–3.89 kg·m). The responses to training also were significantly different between strains, ranging from a decrease of 2.2 min in NON/ShiLtJ mice to an increase of 8.7 min in SWR/J mice. Changes in work also varied considerably between the lowest (−0.24 kg·m in NON/ShiLtJ) and highest (+2.30 kg·m in FVB/NJ) performing strains. Heart and skeletal muscle masses also varied significantly between strains. Two broad sense heritability estimates were calculated for each measure of exercise capacity and for responses to training. For change in run time, the intraclass correlation between mice within the same inbred strain (rI) was 0.58 and the coefficient of genetic determination (g2) was 0.41. Heritability estimates were similar for the change in work: rI = 0.54 and g2 = 0.37. In conclusion, these results indicate genetic background significantly influences responses to exercise training.
Physiological Genomics | 2016
Seung Kyum Kim; Joshua J. Avila; Michael P. Massett
Understanding the genetic influence on vascular reactivity is important for identifying genes underlying impaired vascular function. The purpose of this study was to characterize the genetic contribution to intrinsic vascular function and to identify loci associated with phenotypic variation in vascular reactivity in mice. Concentration response curves to phenylephrine (PE), potassium chloride (KCl), acetylcholine (ACh), and sodium nitroprusside (SNP) were generated in aortic rings from male mice (12 wk old) from 27 inbred mouse strains. Significant strain-dependent differences were found for both maximal responses and sensitivity for each agent, except for SNP Max (%). Strain differences for maximal responses to ACh, PE, and KCl varied by two- to fivefold. On the basis of these large strain differences, we performed genome-wide association mapping (GWAS) to identify loci associated with variation in responses to these agents. GWAS for responses to ACh identified four significant and 19 suggestive loci. Several suggestive loci for responses to SNP, PE, and KCl (including one significant locus for KCl EC50) were also identified. These results demonstrate that intrinsic endothelial function, and more generally vascular function, is genetically determined and associated with multiple genomic loci. Furthermore, these results are supported by the finding that several genes residing in significant and suggestive loci for responses to ACh were previously identified in rat and/or human quantitative trait loci/GWAS for cardiovascular disease. This study represents the first step toward the unbiased comprehensive discovery of genetic determinants that regulate intrinsic vascular function, particularly endothelial function.
The FASEB Journal | 2015
Seung Kyum Kim; Joshua J. Avila; Michael P. Massett
The FASEB Journal | 2014
Joshua J. Avila; Seung Kyum Kim; Michael P. Massett
The FASEB Journal | 2014
Seung Kyum Kim; Joshua J. Avila; Michael P. Massett
The FASEB Journal | 2014
Michael P. Massett; Joshua J. Avila; Seung Kyum Kim
Medicine and Science in Sports and Exercise | 2014
Seung Kyum Kim; Joshua J. Avila; Michael P. Massett
The FASEB Journal | 2009
Megan E. Sheehy; Joshua J. Avila; Julie A. Gutierres; Matthew J. Delmonico; Ingrid E. Lofgren