Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua J. Park is active.

Publication


Featured researches published by Joshua J. Park.


Molecular Neurobiology | 2011

Collapsin Response Mediator Protein-2: An Emerging Pathologic Feature and Therapeutic Target for Neurodisease Indications

Kenneth Hensley; Kalina Venkova; Alexandar Christov; William T. Gunning; Joshua J. Park

Collapsin response mediator protein-2 (DPYSL2 or CRMP2) is a multifunctional adaptor protein within the central nervous system. In the developing brain or cell cultures, CRMP2 performs structural and regulatory functions related to cytoskeletal dynamics, vesicle trafficking and synaptic physiology whereas CRMP2 functions in adult brain are still being elucidated. CRMP2 has been associated with several neuropathologic or psychiatric conditions including Alzheimer’s disease (AD) and schizophrenia, either at the level of genetic polymorphisms; protein expression; post-translational modifications; or protein/protein interactions. In AD, CRMP2 is phosphorylated by glycogen synthase kinase-3β (GSK3β) and cyclin dependent protein kinase-5 (CDK5), the same kinases that act on tau protein in generating neurofibrillary tangles (NFTs). Phosphorylated CRMP2 collects in NFTs in association with the synaptic structure-regulating SRA1/WAVE1 (specifically Rac1-associated protein-1/WASP family verprolin-homologous protein-1) complex. This phenomenon could plausibly contribute to deficits in neural and synaptic structure that have been well documented in AD. This review discusses the essential biology of CRMP2 in the context of nascent data implicating CRMP2 perturbations as either a correlate of, or plausible contributor to, diverse neuropathologies. A discussion is made of recent findings that the atypical antidepressant tianeptine increases CRMP2 expression, whereas other, neuroactive small molecules including the epilepsy drug lacosamide and the natural brain metabolite lanthionine ketimine appear to bind CRMP2 directly with concomitant affects on neural structure. These findings constitute proofs-of-concept that pharmacological manipulation of CRMP2 is possible and hence, may offer new opportunities for therapy development against certain neurological diseases.


Molecular Endocrinology | 2008

How Peptide Hormone Vesicles Are Transported to the Secretion Site for Exocytosis

Joshua J. Park; Y. Peng Loh

Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.


Molecular and Cellular Neuroscience | 2008

A bi-directional carboxypeptidase E-driven transport mechanism controls BDNF vesicle homeostasis in hippocampal neurons

Joshua J. Park; Niamh X. Cawley; Y. Peng Loh

Anterograde transport of brain-derived neurotrophic factor (BDNF) vesicles from the soma to neurite terminals is necessary for activity-dependent secretion of BDNF to mediate synaptic plasticity, memory and learning, and retrograde BDNF transport back to the soma for recycling. In our study, overexpression of the cytoplasmic tail of the carboxypeptidase E (CPE) found in BDNF vesicles significantly reduced localization of BDNF in neurites of hippocampal neurons. Live-cell imaging showed that the velocity and distance of movement of fluorescent protein-tagged CPE- or BDNF-containing vesicles were reduced in both directions. In pulldown assays, the CPE tail interacted with dynactin along with kinesin-2 and kinesin-3, and cytoplasmic dynein. Competition assays using a CPE tail peptide verified specific interaction between the CPE tail and dynactin. Thus, the CPE cytoplasmic tail binds dynactin that recruits kinesins or dynein for driving bi-directional transport of BDNF vesicle to maintain vesicle homeostasis and secretion in hippocampal neurons.


Molecular Endocrinology | 2008

Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones.

Joshua J. Park; Niamh X. Cawley; Y. Peng Loh

Vesicular transport of peptide hormones from the cell body to the plasma membrane for activity-dependent secretion is important for endocrine function, but how it is achieved is unclear. Here we uncover a mechanism in which the cytoplasmic tail of transmembrane carboxypeptidase E (CPE) found in proopiomelanocotin (POMC)/ACTH vesicles interacts with microtubule-based motors to control transport of these vesicles to the release site in pituitary cells. Overexpression of the CPE tail in live cells significantly reduced the velocity and distance of POMC/ACTH- and CPE-containing vesicle movement into the cell processes. Biochemical studies showed that the CPE tail interacted with dynactin, which, in turn, recruited microtubule plus-end motors kinesin 2 and kinesin 3. Overexpression of the CPE tail inhibited the stimulated secretion of ACTH from AtT20 cells. Thus, the CPE cytoplasmic tail interaction with dynactin-kinesin 2/kinesin 3 plays an important role in the transport of POMC vesicles for activity-dependent secretion.


International Review of Cell and Molecular Biology | 2012

Cellular mechanisms for the biogenesis and transport of synaptic and dense-core vesicles.

Marjorie C. Gondré-Lewis; Joshua J. Park; Y. Peng Loh

The release of intercellular messengers from synaptic (SVs) and dense-core vesicles (DCVs) constitutes the primary mechanism for communication between neighboring or distant cells and organs in response to stimuli. Here we review the life span of SVs and DCVs found in the brain, neuroendocrine and exocrine tissues. These vesicles must be formed, trafficked, and their contents secreted; processes which require orchestrated actions of a great repertoire of lipids, proteins, and enzymes. For biogenesis and vesicular budding, lipids that influence curvature and aggregation of cargo are necessary for pinching off of vesicles. Vesicles travel on cytoskeletal filaments powered by motors that control the dynamics: location, speed, and directionality of movement. Regardless of mechanisms of traffic, vesicles arrive at sites of release and are docked for exocytosis, followed by membrane fusion, and release of vesicular content to exert physiological responses. Neurological disorders with pathology involving abnormal vesicular budding, trafficking, or secretion are discussed.


Journal of Cell Science | 2011

A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells

Joshua J. Park; Marjorie C. Gondré-Lewis; Lee E. Eiden; Y. Peng Loh

Golgi-to-plasma-membrane trafficking of synaptic-like microvesicle (SLMV) proteins, vesicular acetylcholine transporter (VAChT) and synaptophysin (SYN), and a large dense-core vesicle (LDCV) protein, chromogranin A (CgA), was investigated in undifferentiated neuroendocrine PC12 cells. Live cell imaging and 20°C block–release experiments showed that VAChT–GFP, SYN–GFP and CgA–RFP specifically and transiently cohabitated in a distinct sorting compartment during cold block and then separated into synaptic protein transport vesicles (SPTVs) and LDCVs, after release from temperature block. We found that in this trans-Golgi subcompartment there was colocalization of SPTV and LDCV proteins, most significantly with VAMP4 and Golgin97, and to some degree with TGN46, but not at all with TGN38. Moreover, some SNAP25 and VAMP2, two subunits of the exocytic machinery, were also recruited onto this compartment. Thus, in neuroendocrine cells, synaptic vesicle and LDCV proteins converge briefly in a distinct trans-Golgi network subcompartment before sorting into SPTVs and LDCVs, ultimately for delivery to the plasma membrane. This specialized sorting compartment from which SPTVs and LDCVs bud might facilitate the acquisition of common exocytic machinery needed on the membranes of these vesicles.


Journal of Neurochemistry | 2010

Carboxypeptidase E cytoplasmic tail mediates localization of synaptic vesicles to the pre‐active zone in hypothalamic pre‐synaptic terminals

Hong Lou; Joshua J. Park; Niamh X. Cawley; Annahita Sarcon; Lei Sun; Tiffany Adams; Yoke Peng Loh

J. Neurochem. (2010) 114, 886–896.


Journal of Molecular Neuroscience | 2013

γ-Adducin Promotes Process Outgrowth and Secretory Protein Exit from the Golgi Apparatus

Hong Lou; Joshua J. Park; André W. Phillips; Y. Peng Loh

Abstractα, β, and γ adducins mediate F-actin remodeling of plasma membrane structures as heterotetramers. Here, we present two new functions of γ-adducin. (1) Overexpression of γ-adducin promoted formation of neurite-like processes in non-neuronal fibroblast COS7 cells. Conversely, overexpression of the C-terminal 38 amino acids of γ-adducin (γAddC38) acting as a dominant negative inhibited formation of neurites/processes in Neuro2A cells and anterior pituitary AtT20 cells. (2) γ-Adducin appears to facilitate pro-opiomelanocortin (POMC) exit from the trans-Golgi network (TGN) by re-organizing the actin network around the Golgi complex. Filamentous actins (F-actins) which formed puncti around the Golgi complex in control cells were dispersed in AtT20 cells stably transfected with γAddC38. Furthermore, γAddC38-transfectants showed significant accumulation of POMC/adrenocorticotropin (ACTH) in the Golgi complex and diminished POMC/ACTH vesicles in the cell processes. The C-terminal 38 amino acids of γ-adducin interacted with F-actins around the Golgi complex, to facilitate F-actin-mediated budding of POMC/ACTH vesicles from the TGN. Thus, we propose that γ-adducin, via its interaction with F-actins, plays a critical role in actin remodeling to facilitate process/neurite outgrowth, as well as budding of POMC/ACTH vesicles from the TGN via its interaction with peri-Golgi F-actins.


International Journal of Molecular Sciences | 2017

Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer’s Disease?

Kelsey Murphy; Joshua J. Park

Alzheimer’s disease (AD) is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER) stress and autophagy dysfunction, resulting in more complicated pathogenesis. Currently, few treatments can modify the complicated pathogenic progress of AD. Compared to the treatment with exogenous antioxidants, the activation of global antioxidant defense system via Nrf2 looks more promising in attenuating oxidative stress in AD brains. Accompanying the activation of the Nrf2-mediated antioxidant defense system that reduce the AD-causative factor, oxidative stress, it is also necessary to activate the neurotrophic signaling pathway that replaces damaged organelles and molecules with new ones. Thus, the dual actions to activate both the Nrf2 antioxidant system and neurotrophic signaling pathway are expected to provide a better strategy to modify AD pathogenesis. Here, we review the current understanding of AD pathogenesis and neuronal defense systems and discuss a possible way to co-activate the Nrf2 antioxidant system and neurotrophic signaling pathway with the hope of helping to find a better strategy to slow AD.


Journal of Neuroendocrinology | 2013

Annexin A1 Complex Mediates Oxytocin Vesicle Transport

Vishruti Makani; Rukhsana Sultana; Khin Sander Sie; Doris Orjiako; Marco Tatangelo; Abigail R. Dowling; Jian Cai; William M. Pierce; D. Allan Butterfield; Jennifer W. Hill; Joshua J. Park

Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro‐oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9‐amino‐acid mature form during post‐Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin‐positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A‐kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)‐ and protein kinase C (PKC)‐sensitive manner. ANXA1 showed significant co‐localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin‐2 with ANXA1, thus increasing the axon‐localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin‐2 to ANXA1, thus attenuating the axon‐localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.

Collaboration


Dive into the Joshua J. Park's collaboration.

Top Co-Authors

Avatar

Y. Peng Loh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niamh X. Cawley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hong Lou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge