Joshua J. Yim
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua J. Yim.
Journal of the American Chemical Society | 2012
Stephan H. von Reuss; Neelanjan Bose; Jagan Srinivasan; Joshua J. Yim; Joshua C. Judkins; Paul W. Sternberg; Frank C. Schroeder
In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.
Angewandte Chemie | 2012
Neelanjan Bose; Akira Ogawa; Stephan H. von Reuss; Joshua J. Yim; Erik J. Ragsdale; Ralf J. Sommer; Frank C. Schroeder
Chemistry the worms way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans.
Neurology | 2009
Alicia G. Floyd; Qiping Yu; Panida Piboolnurak; M. X. Tang; Y. Fang; W. A. Smith; Joshua J. Yim; Lewis P. Rowland; Hiroshi Mitsumoto; Seth L. Pullman
Objective: To investigate transcranial magnetic stimulation (TMS) measures as clinical correlates and longitudinal markers of amyotrophic lateral sclerosis (ALS). Methods: We prospectively studied 60 patients with ALS subtypes (sporadic ALS, familial ALS, progressive muscular atrophy, and primary lateral sclerosis) using single pulse TMS, recording from abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. We evaluated three measures: 1) TMS motor response threshold to the ADM, 2) central motor conduction time (CMCT), and 3) motor evoked potential amplitude (correcting for peripheral changes). Patients were evaluated at baseline, compared with controls, and followed every 3 months for up to six visits. Changes were analyzed using generalized estimation equations to test linear trends with time. Results: TMS threshold, CMCT, and TMS amplitude correlated (p < 0.05) with clinical upper motor neuron (UMN) signs at baseline and were different (p < 0.05) from normal controls in at least one response. Seventy-eight percent of patients with UMN (41/52) and 50% (4/8) of patients without clinical UMN signs had prolonged CMCT. All three measures revealed significant deterioration over time: TMS amplitude showed the greatest change, decreasing 8% per month; threshold increased 1.8% per month; and CMCT increased by 0.9% per month. Conclusions: Transcranial magnetic stimulation (TMS) findings, particularly TMS amplitude, can objectively discriminate corticospinal tract involvement in amyotrophic lateral sclerosis (ALS) from controls and assess the progression of ALS. While central motor conduction time and response threshold worsen by less than 2% per month, TMS amplitude decrease averages 8% per month, and may be a useful objective marker of disease progression.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Andrea Choe; Tatsuji Chuman; Stephan H. von Reuss; Aaron T. Dossey; Joshua J. Yim; Ramadan Ajredini; Adam Kolawa; Fatma Kaplan; Hans T. Alborn; Peter E. A. Teal; Frank C. Schroeder; Paul W. Sternberg; Arthur S. Edison
Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.
Journal of Biological Chemistry | 2013
Alexander B. Artyukhin; Joshua J. Yim; Jagan Srinivasan; Yevgeniy Izrayelit; Neelanjan Bose; Stephan H. von Reuss; Yeara Jo; James M. Jordan; L. Ryan Baugh; Micheong Cheong; Paul W. Sternberg; Leon Avery; Frank C. Schroeder
Background: Ascarosides play central roles regulating C. elegans behavior and development. Results: L1 larvae produce starvation-dependent ascarosides based on succinylated octopamine. Conclusion: Succinylation is an important pathway for metabolism of biogenic amines in C. elegans. Significance: Octopamine ascarosides connect neurotransmitter and ascaroside signaling in C. elegans. The ascarosides, small-molecule signals derived from combinatorial assembly of primary metabolism-derived building blocks, play a central role in Caenorhabditis elegans biology and regulate many aspects of development and behavior in this model organism as well as in other nematodes. Using HPLC-MS/MS-based targeted metabolomics, we identified novel ascarosides incorporating a side chain derived from succinylation of the neurotransmitter octopamine. These compounds, named osas#2, osas#9, and osas#10, are produced predominantly by L1 larvae, where they serve as part of a dispersal signal, whereas these ascarosides are largely absent from the metabolomes of other life stages. Investigating the biogenesis of these octopamine-derived ascarosides, we found that succinylation represents a previously unrecognized pathway of biogenic amine metabolism. At physiological concentrations, the neurotransmitters serotonin, dopamine, and octopamine are converted to a large extent into the corresponding succinates, in addition to the previously described acetates. Chemically, bimodal deactivation of biogenic amines via acetylation and succinylation parallels posttranslational modification of proteins via acetylation and succinylation of l-lysine. Our results reveal a small-molecule connection between neurotransmitter signaling and interorganismal regulation of behavior and suggest that ascaroside biosynthesis is based in part on co-option of degradative biochemical pathways.
Organic Letters | 2011
Inish O’Doherty; Joshua J. Yim; Eric A. Schmelz; Frank C. Schroeder
A cross metathesis (CM)-based synthesis of the caeliferins, a family of sulfooxy fatty acids that elicit plant immune responses, is reported. Unexpectedly, detailed NMR spectroscopic and mass spectrometric analyses of CM reaction mixtures revealed extensive isomerization and homologation of starting materials and products. It is shown that the degree of isomerization and homologation in CM strongly correlates with substrate chain length and lipophilicity. Side-product suppression requires appropriate catalyst selection and use of 1,4-benzoquinone as a hydride scavenger.
Current Biology | 2014
Igor Iatsenko; Joshua J. Yim; Frank C. Schroeder; Ralf J. Sommer
Studies on Caenorhabditis elegans have provided detailed insight into host-pathogen interactions. Usually, the E. coli strain OP50 is used as food source for laboratory studies, but recent work has shown that a variety of bacteria have dramatic effects on C. elegans physiology, including immune responses. However, the mechanisms by which different bacteria impact worm resistance to pathogens are poorly understood. Although pathogen-specific immune priming is often discussed as a mechanism underlying such observations, interspecies microbial antagonism might represent an alternative mode of action. Here, we use several natural Bacillus strains to study their effects on nematode survival upon pathogen challenge. We show that B. subtilis GS67 persists in the C. elegans intestine and increases worm resistance to Gram-positive pathogens, suggesting that direct inhibition of pathogens might be the primary protective mechanism. Indeed, chemical and genetic analyses identified the lipopeptide fengycin as the major inhibitory molecule produced by B. subtilis GS67. Specifically, a fengycin-defective mutant of B. subtilis GS67 lost inhibitory activity against pathogens and was unable to protect C. elegans from infections. Furthermore, we found that purified fengycin cures infected worms in a dose-dependent manner, indicating that it acts as an antibiotic. Our results reveal a molecular mechanism for commensal-mediated C. elegans protection and highlight the importance of interspecies microbial antagonism for the outcome of animal-pathogen interactions. Furthermore, our work strengthens C. elegans as an in vivo model to reveal protective mechanisms of commensal bacteria, including those relevant to mammalian hosts.
Scientific Reports | 2015
Alexander B. Artyukhin; Joshua J. Yim; Mi Cheong Cheong; Leon Avery
We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior—they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies.
Immunity | 2018
Chaido Stathopoulou; Arunakumar Gangaplara; Grace Mallett; Francis A. Flomerfelt; Lukasz P. Liniany; David Knight; Leigh Samsel; Rolando Berlinguer-Palmini; Joshua J. Yim; Tania C. Felizardo; Michael A. Eckhaus; Laura E. Edgington-Mitchell; Jonathan Martinez-Fabregas; Daniel H. Fowler; Sander I. van Kasteren; Arian Laurence; Matthew Bogyo; Colin Watts; Ethan M. Shevach; Shoba Amarnath
SUMMARY CD4+ T cell differentiation into multiple T helper (Th) cell lineages is critical for optimal adaptive immune responses. This report identifies an intrinsic mechanism by which programmed death‐1 receptor (PD‐1) signaling imparted regulatory phenotype to Foxp3+ Th1 cells (denoted as Tbet+iTregPDL1 cells) and inducible regulatory T (iTreg) cells. Tbet+iTregPDL1 cells prevented inflammation in murine models of experimental colitis and experimental graft versus host disease (GvHD). Programmed death ligand‐1 (PDL‐1) binding to PD‐1 imparted regulatory function to Tbet+iTregPDL1 cells and iTreg cells by specifically downregulating endo‐lysosomal protease asparaginyl endopeptidase (AEP). AEP regulated Foxp3 stability and blocking AEP imparted regulatory function in Tbet+iTreg cells. Also, Aep−/− iTreg cells significantly inhibited GvHD and maintained Foxp3 expression. PD‐1‐mediated Foxp3 maintenance in Tbet+ Th1 cells occurred both in tumor infiltrating lymphocytes (TILs) and during chronic viral infection. Collectively, this report has identified an intrinsic function for PD‐1 in maintaining Foxp3 through proteolytic pathway. Graphical Abstract Figure. No caption available. HighlightsAsparaginyl endopeptidase (AEP) is expressed in induced regulatory T cellsAEP cleaves Foxp3 and Aep−/− mice have elevated numbers of peripheral Treg cellsAEP deficiency increases Treg cell frequency and numbers in GvHD and melanomaPD‐1 signaling maintains Foxp3 protein expression by inhibiting AEP &NA; Th1 cells are known for their enhanced stability, so mechanisms that mediate their flexibility are poorly studied. Here, Stathopoulou et al. demonstrate that plasticity of Th1 cells to Tbet+iTreg cells is mediated by PD‐1 signaling via asparaginyl endopeptidase (AEP). AEP inhibition enhanced iTreg cells in GvHD and tumor models.
Chemistry & Biology | 2018
Jan M. Falcke; Neelanjan Bose; Alexander B. Artyukhin; Christian Rödelsperger; Gabriel V. Markov; Joshua J. Yim; Dominik Grimm; Marc Claassen; Oishika Panda; Joshua A. Baccile; Ying K. Zhang; Henry H. Le; Dino Jolic; Frank C. Schroeder; Ralf J. Sommer
In the nematodes Caenorhabditis elegans and Pristionchus pacificus, a modular library of small molecules control behavior, lifespan, and development. However, little is known about the final steps of their biosynthesis, in which diverse building blocks from primary metabolism are attached to glycosides of the dideoxysugar ascarylose, the ascarosides. We combine metabolomic analysis of natural isolates of P. pacificus with genome-wide association mapping to identify a putative carboxylesterase, Ppa-uar-1, that is required for attachment of a pyrimidine-derived moiety in the biosynthesis of ubas#1, a major dauer pheromone component. Comparative metabolomic analysis of wild-type and Ppa-uar-1 mutants showed that Ppa-uar-1 is required specifically for the biosynthesis of ubas#1 and related metabolites. Heterologous expression of Ppa-UAR-1 in C. elegans yielded a non-endogenous ascaroside, whose structure confirmed that Ppa-uar-1 is involved in modification of a specific position in ascarosides. Our study demonstrates the utility of natural variation-based approaches for uncovering biosynthetic pathways.