Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Jasensky is active.

Publication


Featured researches published by Joshua Jasensky.


Journal of the American Chemical Society | 2012

Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change.

Shuji Ye; Hongchun Li; Feng Wei; Joshua Jasensky; Andrew P. Boughton; Pei Yang; Zhan Chen

Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.


Langmuir | 2012

Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy

Yuwei Liu; Joshua Jasensky; Zhan Chen

Interfacial peptides and proteins are critical in many biological processes and thus are of interest to various research fields. To study these processes, surface sensitive techniques are required to completely describe different interfacial interactions intrinsic to many complicated processes. Sum frequency generation (SFG) spectroscopy has been developed into a powerful tool to investigate these interactions and mechanisms of a variety of interfacial peptides and proteins. It has been shown that SFG has intrinsic surface sensitivity and the ability to acquire conformation, orientation, and ordering information about these systems. This paper reviews recent studies on peptide/protein-substrate interactions, peptide/protein-membrane interactions, and protein complexes at interfaces and demonstrates the ability of SFG on unveiling the molecular pictures of complicated interfacial biological processes.


Journal of Structural Biology | 2012

Cell volume changes during apoptosis monitored in real time using digital holographic microscopy

Alexander Khmaladze; Rebecca L. Matz; Tamir Epstein; Joshua Jasensky; Mark M. Banaszak Holl; Zhan Chen

Cellular volume changes play important roles in many processes associated with the normal cell activity, as well as various diseases. Consequently, there is a considerable need to accurately measure volumes of both individual cells and cell populations as a function of time. In this study, we have monitored cell volume changes in real time during apoptosis using digital holographic microscopy. Cell volume changes were deduced from the measured phase change of light transmitted through cells. Our digital holographic experiments showed that after exposure to 1 μM staurosporine for 4 h, the volumes of KB cells were reduced by ~50-60%, which is consistent with previous results obtained using electronic cell sizing and atomic force microscopy. In comparison with other techniques, digital holographic microscopy is advantageous because it employs noninvasive detection, has high time resolution, real time measurement capability, and the ability to simultaneously investigate time-dependent volume changes of both individual cells and cell populations.


Accounts of Chemical Research | 2016

Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy

Bei Ding; Joshua Jasensky; Yaoxin Li; Zhan Chen

Understanding molecular structures of interfacial peptides and proteins impacts many research fields by guiding the advancement of biocompatible materials, new and improved marine antifouling coatings, ultrasensitive and highly specific biosensors and biochips, therapies for diseases related to protein amyloid formation, and knowledge on mechanisms for various membrane proteins and their interactions with ligands. Developing methods for measuring such unique systems, as well as elucidating the structure and function relationship of such biomolecules, has been the goal of our lab at the University of Michigan. We have made substantial progress to develop sum frequency generation (SFG) vibrational spectroscopy into a powerful technique to study interfacial peptides and proteins, which lays a foundation to obtain unique and valuable insights when using SFG to probe various biologically relevant systems at the solid/liquid interface in situ in real time. One highlighting feature of this Account is the demonstration of the power of combining SFG with other techniques and methods such as ATR-FTIR, surface engineering, MD simulation, liquid crystal sensing, and isotope labeling in order to study peptides and proteins at interfaces. It is necessary to emphasize that SFG plays a major role in these studies, while other techniques and methods are supplemental. The central role of SFG is to provide critical information on interfacial peptide and protein structure (e.g., conformation and orientation) in order to elucidate how surface engineering (e.g., to vary the structure) can ultimately affect surface function (e.g., to optimize the activity). This Account focuses on the most significant recent progress in research on interfacial peptides and proteins carried out by our group including (1) the development of SFG analysis methods to determine orientations of regular as well as disrupted secondary structures, and the successful demonstration and application of an isotope labeling method with SFG to probe the detailed local structure and microenvironment of peptides at buried interfaces, (2) systematic research on cell membrane associated peptides and proteins including antimicrobial peptides, cell penetrating peptides, G proteins, and other membrane proteins, discussing the factors that influence interfacial peptide and protein structures such as lipid charge, membrane fluidity, and biomolecule solution concentration, and (3) in-depth discussion on solid surface immobilized antimicrobial peptides and enzymes. The effects of immobilization method, substrate surface, immobilization site on the peptide or protein, and surrounding environment are presented. Several examples leading to high impact new research are also briefly introduced: The orientation change of alamethicin detected while varying the model cell membrane potential demonstrates the feasibility to apply SFG to study ion channel protein gating mechanisms. The elucidation of peptide secondary structures at liquid crystal interfaces shows promising results that liquid crystal can detect and recognize different peptides and proteins. The method of retaining the native structure of surface immobilized peptides or proteins in air demonstrates the feasibility to protect and preserve such structures via the use of hydromimetic functionalities when there is no bulk water. We hope that readers in many different disciplines will benefit from the research progress reported in this Account on SFG studies of interfacial structure-function relationships of peptides and proteins and apply this powerful technique to study interfacial biomolecules in the future.


Optics Letters | 2011

Examining surface and bulk structures using combined nonlinear vibrational spectroscopies

Chi Zhang; Jie Wang; Alexander Khmaladze; Yuwei Liu; Bei Ding; Joshua Jasensky; Zhan Chen

We combined sum-frequency generation (SFG) vibrational spectroscopy with coherent anti-Stokes Raman scattering (CARS) spectroscopy in one system to examine both surface and bulk structures of materials with the same geometry and without the need to move the sample. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) thin films were tested before and after plasma treatment. The sensitivities of SFG and CARS were tested by varying polymer film thickness and using a lipid monolayer.


Langmuir | 2015

Effect of Solvent on Surface Ordering of Poly(3-hexylthiophene) Thin Films

Minyu Xiao; Xiaoxian Zhang; Zachary J. Bryan; Joshua Jasensky; Anne J. McNeil; Zhan Chen

Enhancement of charge transport in organic polymer semiconductors is a crucial step in developing optimized devices. A variety of sample preparation conditions, such as film fabrication method, solvent species, and annealing, were found to influence the hole mobility of organic polymers. Despite the fact that many factors can influence their performance, it is believed that polymer surface ordering plays a key role in determining organic polymer function. Here, sum frequency generation (SFG) vibrational spectroscopy was used to nondestructively map the surface/interfacial ordering of poly(3-hexylthiophene) (P3HT) films prepared using different solvents; we believe that solvent interactions determine the degree of surface/interfacial ordering. Both X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM) were used to supplement SFG to systematically study bulk crystallinity and surface morphology. We conclude that SFG is a powerful tool to elucidate the surface/interfacial structural information on polymer semiconducting films. We demonstrate that the solvent composition used to prepare P3HT thin films influences the resulting film surface morphology, surface/interfacial ordering, and bulk crystallinity.


Journal of the American Chemical Society | 2017

Molecular Interactions between Graphene and Biological Molecules

Xingquan Zou; Shuai Wei; Joshua Jasensky; Minyu Xiao; Qiuming Wang; Charles L. Brooks; Zhan Chen

Applications of graphene have extended into areas of nanobio-technology such as nanobio-medicine, nanobio-sensing, as well as nanoelectronics with biomolecules. These applications involve interactions between proteins, peptides, DNA, RNA etc. and graphene, therefore understanding such molecular interactions is essential. For example, many applications based on using graphene and peptides require peptides to interact with (e.g., noncovalently bind to) graphene at one end, while simultaneously exposing the other end to the surrounding medium (e.g., to detect analytes in solution). To control and characterize peptide behavior on a graphene surface in solution is difficult. Here we successfully probed the molecular interactions between two peptides (cecropin P1 and MSI-78(C1)) and graphene in situ and in real-time using sum frequency generation (SFG) vibrational spectroscopy and molecular dynamics (MD) simulation. We demonstrated that the distribution of various planar (including aromatic (Phe, Trp, Tyr, and His)/amide (Asn and Gln)/Guanidine (Arg)) side-chains and charged hydrophilic (such as Lys) side-chains in a peptide sequence determines the orientation of the peptide adsorbed on a graphene surface. It was found that peptide interactions with graphene depend on the competition between both planar and hydrophilic residues in the peptide. Our results indicated that part of cecropin P1 stands up on graphene due to an unbalanced distribution of planar and hydrophilic residues, whereas MSI-78(C1) lies down on graphene due to an even distribution of Phe residues and hydrophilic residues. With such knowledge, we could rationally design peptides with desired residues to manipulate peptide-graphene interactions, which allows peptides to adopt optimized structure and exhibit excellent activity for nanobio-technological applications. This research again demonstrates the power to combine SFG vibrational spectroscopy and MD simulation in studying interfacial biological molecules.


Optics Letters | 2014

Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces

Chi Zhang; Joshua Jasensky; Chuan Leng; Chelsey A. Del Grosso; Gary D. Smith; Jonathan J. Wilker; Zhan Chen

A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies.


Journal of the American Chemical Society | 2017

Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells

Minyu Xiao; Suneel Joglekar; Xiaoxian Zhang; Joshua Jasensky; Jialiu Ma; Qingyu Cui; L. Jay Guo; Zhan Chen

A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.


Applied Spectroscopy | 2014

Hyperspectral Imaging and Characterization of Live Cells by Broadband Coherent Anti-Stokes Raman Scattering (CARS) Microscopy with Singular Value Decomposition (SVD) Analysis

Alexander Khmaladze; Joshua Jasensky; Erika Price; Chi Zhang; Andrew P. Boughton; Xiaofeng Han; Emily Seeley; Xinran Liu; Mark M. Banaszak Holl; Zhan Chen

Coherent anti-Stokes Raman scattering (CARS) microscopy can be used as a powerful imaging technique to identify chemical compositions of complex samples in biology, biophysics, medicine, and materials science. In this work we developed a CARS microscopic system capable of hyperspectral imaging. By employing an ultrafast laser source, a photonic crystal fiber, and a scanning laser microscope together with spectral detection by a highly sensitive back-illuminated cooled charge-coupled device (CCD) camera, we were able to rapidly acquire and process hyperspectral images of live cells with chemical selectivity. We discuss various aspects of hyperspectral CARS image analysis and demonstrate the use of singular value decomposition methods to characterize the cellular lipid content.

Collaboration


Dive into the Joshua Jasensky's collaboration.

Top Co-Authors

Avatar

Zhan Chen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Chi Zhang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Minyu Xiao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Shuai Wei

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Yaoxin Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge