Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua L. Heazlewood is active.

Publication


Featured researches published by Joshua L. Heazlewood.


The Plant Cell | 2004

Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins

Joshua L. Heazlewood; Julian Tonti-Filippini; Alexander M. Gout; David A. Day; James Whelan; A. Harvey Millar

A novel insight into Arabidopsis mitochondrial function was revealed from a large experimental proteome derived by liquid chromatography–tandem mass spectrometry. Within the experimental set of 416 identified proteins, a significant number of low-abundance proteins involved in DNA synthesis, transcriptional regulation, protein complex assembly, and cellular signaling were discovered. Nearly 20% of the experimentally identified proteins are of unknown function, suggesting a wealth of undiscovered mitochondrial functions in plants. Only approximately half of the experimental set is predicted to be mitochondrial by targeting prediction programs, allowing an assessment of the benefits and limitations of these programs in determining plant mitochondrial proteomes. Maps of putative orthology networks between yeast, human, and Arabidopsis mitochondrial proteomes and the Rickettsia prowazekii proteome provide detailed insights into the divergence of the plant mitochondrial proteome from those of other eukaryotes. These show a clear set of putative cross-species orthologs in the core metabolic functions of mitochondria, whereas considerable diversity exists in many signaling and regulatory functions.


Nucleic Acids Research | 2007

SUBA: the Arabidopsis Subcellular Database

Joshua L. Heazlewood; Robert E. Verboom; Julian Tonti-Filippini; Ian Small; A. Harvey Millar

Knowledge of protein localisation contributes towards our understanding of protein function and of biological inter-relationships. A variety of experimental methods are currently being used to produce localisation data that need to be made accessible in an integrated manner. Chimeric fluorescent fusion proteins have been used to define subcellular localisations with at least 1100 related experiments completed in Arabidopsis. More recently, many studies have employed mass spectrometry to undertake proteomic surveys of subcellular components in Arabidopsis yielding localisation information for approximately 2600 proteins. Further protein localisation information may be obtained from other literature references to analysis of locations (AmiGO: approximately 900 proteins), location information from Swiss-Prot annotations (approximately 2000 proteins); and location inferred from gene descriptions (approximately 2700 proteins). Additionally, an increasing volume of available software provides location prediction information for proteins based on amino acid sequence. We have undertaken to bring these various data sources together to build SUBA, a SUBcellular location database for Arabidopsis proteins. The localisation data in SUBA encompasses 10 distinct subcellular locations, >6743 non-redundant proteins and represents the proteins encoded in the transcripts responsible for 51% of Arabidopsis expressed sequence tags. The SUBA database provides a powerful means by which to assess protein subcellular localisation in Arabidopsis (http://www.suba.bcs.uwa.edu.au).


The Plant Cell | 2003

Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells

Philippe Giegé; Joshua L. Heazlewood; Ute Roessner-Tunali; A.H. Millar; Alisdair R. Fernie; Christopher J. Leaver; Lee J. Sweetlove

Mitochondria fulfill a wide range of metabolic functions in addition to the synthesis of ATP and contain a diverse array of proteins to perform these functions. Here, we present the unexpected discovery of the presence of the enzymes of glycolysis in a mitochondrial fraction of Arabidopsis cells. Proteomic analyses of this mitochondrial fraction revealed the presence of 7 of the 10 enzymes that constitute the glycolytic pathway. Four of these enzymes (glyceraldehyde-3-P dehydrogenase, aldolase, phosphoglycerate mutase, and enolase) were also identified in an intermembrane space/outer mitochondrial membrane fraction. Enzyme activity assays confirmed that the entire glycolytic pathway was present in preparations of isolated Arabidopsis mitochondria, and the sensitivity of these activities to protease treatments indicated that the glycolytic enzymes are present on the outside of the mitochondrion. The association of glycolytic enzymes with mitochondria was confirmed in vivo by the expression of enolase– and aldolase–yellow fluorescent protein fusions in Arabidopsis protoplasts. The yellow fluorescent protein fluorescence signal showed that these two fusion proteins are present throughout the cytosol but are also concentrated in punctate regions that colocalized with the mitochondrion-specific probe Mitotracker Red. Furthermore, when supplied with appropriate cofactors, isolated, intact mitochondria were capable of the metabolism of 13C-glucose to 13C-labeled intermediates of the trichloroacetic acid cycle, suggesting that the complete glycolytic sequence is present and active in this subcellular fraction. On the basis of these data, we propose that the entire glycolytic pathway is associated with plant mitochondria by attachment to the cytosolic face of the outer mitochondrial membrane and that this microcompartmentation of glycolysis allows pyruvate to be provided directly to the mitochondrion, where it is used as a respiratory substrate.


Plant Physiology | 2003

Control of Ascorbate Synthesis by Respiration and Its Implications for Stress Responses

A. Harvey Millar; Valentina Mittova; Guy Kiddle; Joshua L. Heazlewood; Carlos G. Bartoli; Frederica L. Theodoulou; Christine H. Foyer

We show for the first time that respiration can control ascorbate (AA) synthesis in plants. Evidence for this control is provided by (a) the localization of l-galactono-1,4-lactone dehydrogenase (GalLDH), the terminal enzyme in AA biosynthesis, with mitochondrial complex I, and its regulation by


Nucleic Acids Research | 2010

PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update

Pawel Durek; Robert Schmidt; Joshua L. Heazlewood; Alexandra M. E. Jones; Daniel MacLean; Axel Nagel; Birgit Kersten; Waltraud X. Schulze

The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows ‘on-the-fly’ prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences.


Nucleic Acids Research | 2007

PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor

Joshua L. Heazlewood; Pawel Durek; Jan Hummel; Joachim Selbig; Wolfram Weckwerth; Dirk Walther; Waltraud X. Schulze

The PhosPhAt database provides a resource consolidating our current knowledge of mass spectrometry-based identified phosphorylation sites in Arabidopsis and combines it with phosphorylation site prediction specifically trained on experimentally identified Arabidopsis phosphorylation motifs. The database currently contains 1187 unique tryptic peptide sequences encompassing 1053 Arabidopsis proteins. Among the characterized phosphorylation sites, there are over 1000 with unambiguous site assignments, and nearly 500 for which the precise phosphorylation site could not be determined. The database is searchable by protein accession number, physical peptide characteristics, as well as by experimental conditions (tissue sampled, phosphopeptide enrichment method). For each protein, a phosphorylation site overview is presented in tabular form with detailed information on each identified phosphopeptide. We have utilized a set of 802 experimentally validated serine phosphorylation sites to develop a method for prediction of serine phosphorylation (pSer) in Arabidopsis. An analysis of the current annotated Arabidopsis proteome yielded in 27 782 predicted phosphoserine sites distributed across 17 035 proteins. These prediction results are summarized graphically in the database together with the experimental phosphorylation sites in a whole sequence context. The Arabidopsis Protein Phosphorylation Site Database (PhosPhAt) provides a valuable resource to the plant science community and can be accessed through the following link http://phosphat.mpimp-golm.mpg.de


Molecular & Cellular Proteomics | 2005

Differential Impact of Environmental Stresses on the Pea Mitochondrial Proteome

Nicolas L. Taylor; Joshua L. Heazlewood; David A. Day; A. Harvey Millar

Exposure to adverse environmental conditions causes oxidative stress in many organisms, leading either to disease and debilitation or to response and tolerance. Mitochondria are a key site of oxidative stress and of cellular response and play important roles in cell survival. We analyzed the response of mitochondria in pea (Pisum sativum) plants to the common stresses associated with drought, cold, and herbicides. These treatments all altered photosynthetic and respiratory rates of pea leaves to various extents, but only herbicides significantly increased lipid peroxidation product accumulation. Mitochondria isolated from the stressed pea plants maintained their electron transport chain activity, but changes were evident in the abundance of uncoupling proteins, non-phosphorylating respiratory pathways, and oxidative modification of lipoic acid moieties on mitochondrial proteins. These data suggest that herbicide treatment placed a severe oxidative stress on mitochondria, whereas chilling and particularly drought were milder stresses. Detailed analysis of the soluble proteome of mitochondria by gel electrophoresis and mass spectrometry revealed differential degradation of key matrix enzymes during treatments with chilling being significantly more damaging than drought. Differential induction of heat shock proteins and specific losses of other proteins illustrated the diversity of response to these stresses at the protein level. Cross-species matching was required for mass spectrometry identification of nine proteins because only a limited number of pea cDNAs have been sequenced, and the full pea genome is not available. Blue-native separation of intact respiratory chain complexes revealed little if any change in response to environmental stresses. Together these data suggest that although many of the molecular events identified by chemical stresses of mitochondria from a range of model eukaryotes are also apparent during environmental stress of plants, their extent and significance can vary substantially.


Plant Physiology | 2003

Towards an Analysis of the Rice Mitochondrial Proteome

Joshua L. Heazlewood; Katharine A. Howell; James Whelan; A. Harvey Millar

Purified rice (Oryza sativa) mitochondrial proteins have been arrayed by isoelectric focusing/polyacrylamide gel electrophoresis (PAGE), by blue-native (BN) PAGE, and by reverse-phase high-performance liquid chromatography (LC) separation (LC-mass spectrometry [MS]). From these protein arrays, we have identified a range of rice mitochondrial proteins, including hydrophilic/hydrophobic proteins (grand average of hydropathicity = −1.27 to +0.84), highly basic and acid proteins (isoelectric point = 4.0–12.5), and proteins over a large molecular mass range (6.7–252 kD), using proteomic approaches. BN PAGE provided a detailed picture of electron transport chain protein complexes. A total of 232 protein spots from isoelectric focusing/PAGE and BN PAGE separations were excised, trypsin digested, and analyzed by tandem MS (MS/MS). Using this dataset, 149 of the protein spots (the products of 91 nonredundant genes) were identified by searching translated rice open reading frames from genomic sequence and six-frame translated rice expressed sequence tags. Sequence comparison allowed us to assign functions to a subset of 85 proteins, including many of the major function categories expected for this organelle. A further six spots were matched to rice sequences for which no specific function has yet been determined. Complete digestion of mitochondrial proteins with trypsin yielded a peptide mixture that was analyzed directly by reverse-phase LC via organic solvent elution from a C-18 column (LC-MS). These data yielded 170 MS/MS spectra that matched 72 sequence entries from open reading frame and expressed sequence tag databases. Forty-five of these were obtained using LC-MS alone, whereas 28 proteins were identified by both LC-MS and gel-based separations. In total, 136 nonredundant rice proteins were identified, including a new set of 23 proteins of unknown function located in plant mitochondria. We also report the first direct identification, to our knowledge, of PPR (pentatricopeptide repeat) proteins in the plant mitochondrial proteome. This dataset provides the first extensive picture, to our knowledge, of mitochondrial functions in a model monocot plant.


Biochimica et Biophysica Acta | 2003

Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits.

Joshua L. Heazlewood; Katharine A. Howell; A. Harvey Millar

The NADH:ubiquinone oxidoreductase of the mitochondrial respiratory chain is a large multisubunit complex in eukaryotes containing 30-40 different subunits. Analysis of this complex using blue-native gel electrophoresis coupled to tandem mass spectrometry (MS) has identified a series of 30 different proteins from the model dicot plant, Arabidopsis, and 24 different proteins from the model monocot plant, rice. These proteins have been linked back to genes from plant genome sequencing and comparison of this dataset made with predicted orthologs of complex I components in these plants. This analysis reveals that plants contain the series of 14 highly conserved complex I subunits found in other eukaryotic and related prokaryotic enzymes and a small set of 9 proteins widely found in eukaryotic complexes. A significant number of the proteins present in bovine complex I but absent from fungal complex I are also absent from plant complex I and are not encoded in plant genomes. A series of plant-specific nuclear-encoded complex I associated subunits were identified, including a series of ferripyochelin-binding protein-like subunits and a range of small proteins of unknown function. This represents a post-genomic and large-scale analysis of complex I composition in higher plants.


Plant Physiology | 2008

Novel Proteins, Putative Membrane Transporters, and an Integrated Metabolic Network Are Revealed by Quantitative Proteomic Analysis of Arabidopsis Cell Culture Peroxisomes

Holger Eubel; Etienne H. Meyer; Nicolas L. Taylor; John D. Bussell; Nicholas O'Toole; Joshua L. Heazlewood; Ian Castleden; Ian Small; Steven M. Smith; A. Harvey Millar

Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, β-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.

Collaboration


Dive into the Joshua L. Heazlewood's collaboration.

Top Co-Authors

Avatar

A. Harvey Millar

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Berit Ebert

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Henrik Vibe Scheller

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeemeng Lao

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jun Ito

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicolas L. Taylor

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Harriet T. Parsons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andreia M. Smith-Moritz

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge