Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua M. DiNapoli is active.

Publication


Featured researches published by Joshua M. DiNapoli.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens

Joshua M. DiNapoli; Alexander Kotelkin; Lijuan Yang; Subbiah Elankumaran; Brian R. Murphy; Siba K. Samal; Peter L. Collins; Alexander Bukreyev

The international outbreak of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in 2002–2003 highlighted the need to develop pretested human vaccine vectors that can be used in a rapid response against newly emerging pathogens. We evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is highly attenuated in primates, as a topical respiratory vaccine vector with SARS-CoV as a test pathogen. Complete recombinant NDV was engineered to express the SARS-CoV spike S glycoprotein, the viral neutralization and major protective antigen, from an added transcriptional unit. African green monkeys immunized through the respiratory tract with two doses of the vaccine developed a titer of SARS-CoV-neutralizing antibodies comparable with the robust secondary response observed in animals that have been immunized with a different experimental SARS-CoV vaccine and challenged with SARS-CoV. When animals immunized with NDV expressing S were challenged with a high dose of SARS-CoV, direct viral assay of lung tissues taken by necropsy at the peak of viral replication demonstrated a 236- or 1,102-fold (depending on the NDV vector construct) mean reduction in pulmonary SARS-CoV titer compared with control animals. NDV has the potential for further development as a pretested, highly attenuated, intranasal vector to be available for expedited vaccine development for humans, who generally lack preexisting immunity against NDV.


Journal of Virology | 2010

Newcastle Disease Virus-Vectored Vaccines Expressing the Hemagglutinin or Neuraminidase Protein of H5N1 Highly Pathogenic Avian Influenza Virus Protect against Virus Challenge in Monkeys

Joshua M. DiNapoli; Baibaswata Nayak; Lijuan Yang; Brad Finneyfrock; Anthony Cook; Hanne Andersen; Fernando Torres-Velez; Brian R. Murphy; Siba K. Samal; Peter L. Collins; Alexander Bukreyev

ABSTRACT H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract. Here we developed additional NDV-vectored vaccines expressing either HPAIV HA in which the polybasic cleavage site was replaced with that from a low-pathogenicity strain of influenza virus [HA(RV)], in order to address concerns of enhanced vector replication or genetic exchange, or HPAIV neuraminidase (NA). The three vaccine viruses [NDV/HA, NDV/HA(RV), and NDV/NA] were administered separately to groups of African green monkeys by the intranasal/intratracheal route. An additional group of animals received NDV/HA by aerosol administration. Each of the vaccine constructs was highly restricted for replication, with only low levels of virus shedding detected in respiratory secretions. All groups developed high levels of neutralizing antibodies against homologous and heterologous strains of HPAIV and were protected against challenge with 2 × 107 PFU of homologous HPAIV. Thus, needle-free, highly attenuated NDV-vectored vaccines expressing either HPAIV HA, HA(RV), or NA have been developed and demonstrated to be individually immunogenic and protective in a primate model of HPAIV infection. The finding that HA(RV) was protective indicates that it would be preferred for inclusion in a vaccine. The study also identified NA as an independent protective HPAIV antigen in primates. Furthermore, we demonstrated the feasibility of aerosol delivery of NDV-vectored vaccines.


Journal of Virology | 2007

Immunization of Primates with a Newcastle Disease Virus-Vectored Vaccine via the Respiratory Tract Induces a High Titer of Serum Neutralizing Antibodies against Highly Pathogenic Avian Influenza Virus

Joshua M. DiNapoli; Lijuan Yang; Amorsolo L. Suguitan; Subbiah Elankumaran; David W. Dorward; Brian R. Murphy; Siba K. Samal; Peter L. Collins; Alexander Bukreyev

ABSTRACT The ongoing outbreak of highly pathogenic avian influenza virus (HPAIV) in birds, the incidence of transmission to humans with a resulting high mortality rate, and the possibility of a human pandemic warrant the development of effective human vaccines against HPAIV. We developed an experimental live-attenuated vaccine for direct inoculation of the respiratory tract based on recombinant avian Newcastle disease virus (NDV) expressing the hemagglutinin (HA) glycoprotein of H5N1 HPAIV (NDV-HA). Expression of the HPAIV HA gene slightly reduced NDV virulence, as evidenced by the increased mean embryo death time and reduced replication in chickens. NDV-HA was administered to African green monkeys in two doses of 2 × 107 infectious units each with a 28-day interval to evaluate the systemic and local antibody responses specific to H5N1 HPAIV. The virus was shed only at low titers from the monkeys, indicative of safety. Two doses of NDV-HA induced a high titer of H5N1 HPAIV-neutralizing serum antibodies in all of the immunized monkeys. Moreover, a substantial mucosal immunoglobulin A response was induced in the respiratory tract after one and two doses. The titers of neutralizing antibodies achieved in this study suggest that the vaccine would be likely to prevent mortality and reduce morbidity caused by the H5N1 HPAIV. In addition, induction of a local immune response in the respiratory tract is an important advantage that is likely to reduce or prevent transmission of the virus during an outbreak or a pandemic. This vaccine is a candidate for clinical evaluation in humans.


Vaccine | 2010

Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response.

Joshua M. DiNapoli; Lijuan Yang; Siba K. Samal; Brian R. Murphy; Peter L. Collins; Alexander Bukreyev

Abstract We previously developed a respiratory tract vaccine candidate against Ebola virus (EBOV) based on human parainfluenza virus type 3 (HPIV3), a respiratory paramyxovirus, expressing the EBOV GP envelope protein (HPIV3/GP) from an added gene. Two doses of this vaccine candidate delivered by the intranasal and intratracheal route protected monkeys against intraperitoneal challenge with EBOV; however, concerns exist that the vaccine candidate may have reduced immunogenicity in the adult human population due to pre-existing immunity against HPIV3. Here we developed a new vaccine candidate (NDV/GP) based on Newcastle disease virus (NDV), an avian paramyxovirus that is antigenically distinct from human viral pathogens and is highly attenuated in monkeys. Following one intranasal and intratracheal inoculation of Rhesus monkeys with NDV/GP, titers of EBOV-specific antibodies in respiratory tract secretions and serum samples determined by ELISA, as well as serum EBOV-neutralizing antibodies, were undetectable or low compared to those induced by HPIV3/GP. A second immunization resulted in a substantial boost in serum IgG ELISA titers, yet the titers remained lower than those induced by a second dose of HPIV3/GP. In contrast, the ELISA IgA titers in respiratory tract secretions and, more importantly, the serum EBOV-neutralizing antibody titers were equal to those induced after the second dose of HPIV3/GP. These data suggest that NDV/GP can be effective for immunization against EBOV alone, or in combination with either HPIV3/GP or another vaccine platform in a heterologous prime-boost regimen.


Journal of Virology | 2010

Contributions of the Avian Influenza Virus HA, NA, and M2 Surface Proteins to the Induction of Neutralizing Antibodies and Protective Immunity

Baibaswata Nayak; Sachin Kumar; Joshua M. DiNapoli; Anandan Paldurai; Daniel R. Perez; Peter L. Collins; Siba K. Samal

ABSTRACT Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 causes severe disease and mortality in poultry. Increased transmission of H5N1 HPAIV from birds to humans is a serious threat to public health. We evaluated the individual contributions of each of the three HPAIV surface proteins, namely, the hemagglutinin (HA), the neuraminidase (NA), and the M2 proteins, to the induction of HPAIV-neutralizing serum antibodies and protective immunity in chickens. Using reverse genetics, three recombinant Newcastle disease viruses (rNDVs) were engineered, each expressing the HA, NA, or M2 protein of H5N1 HPAIV. Chickens were immunized with NDVs expressing a single antigen (HA, NA, and M2), two antigens (HA+NA, HA+M2, and NA+M2), or three antigens (HA+NA+M2). Immunization with HA or NA induced high titers of HPAIV-neutralizing serum antibodies, with the response to HA being greater, thus identifying HA and NA as independent neutralization antigens. M2 did not induce a detectable neutralizing serum antibody response, and inclusion of M2 with HA or NA reduced the magnitude of the response. Immunization with HA alone or in combination with NA induced complete protection against HPAIV challenge. Immunization with NA alone or in combination with M2 did not prevent death following challenge, but extended the time period before death. Immunization with M2 alone had no effect on morbidity or mortality. Thus, there was no indication that M2 is immunogenic or protective. Furthermore, inclusion of NA in addition to HA in a vaccine preparation for chickens may not enhance the high level of protection provided by HA.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization

Cyril Le Nouën; Linda G. Brock; Cindy Luongo; Thomas McCarty; Lijuan Yang; Masfique Mehedi; Eckard Wimmer; Steffen Mueller; Peter L. Collins; Ursula J. Buchholz; Joshua M. DiNapoli

Significance Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded to increase the usage of underrepresented codon pairs, leaving amino acid coding unchanged. CPD viruses were temperature-sensitive and grew less efficiently in vitro than wild-type RSV. In addition, the CPD viruses exhibited a range of restriction in mice and African green monkeys that compared favorably with existing attenuated strains presently in clinical studies. This study produced examples of a new type of vaccine candidate for RSV and showed that CPD of a nonsegmented negative-strand RNA virus can rapidly generate vaccine candidates with a range of attenuation. Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease worldwide. A vaccine or generally effective antiviral drug is not yet available. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded by rearranging existing synonymous codons to increase the content of underrepresented codon pairs. Amino acid coding was completely unchanged. Four CPD RSV genomes were designed in which the indicated ORFs were recoded: Min A (NS1, NS2, N, P, M, and SH), Min B (G and F), Min L (L), and Min FLC (all ORFs except M2-1 and M2-2). Surprisingly, the recombinant CPD viruses were temperature-sensitive for replication in vitro (level of sensitivity: Min FLC > Min L > Min B > Min A). All of the CPD mutants grew less efficiently in vitro than recombinant wild-type (WT) RSV, even at the typically permissive temperature of 32 °C (growth efficiency: WT > Min L > Min A > Min FLC > Min B). CPD of the ORFs for the G and F surface glycoproteins provided the greatest restrictive effect. The CPD viruses exhibited a range of restriction in mice and African green monkeys comparable with that of two attenuated RSV strains presently in clinical trials. This study provided a new type of attenuated RSV and showed that CPD can rapidly generate vaccine candidates against nonsegmented negative-strand RNA viruses, a large and expanding group that includes numerous pathogens of humans and animals.


Virology | 2010

Mucosal parainfluenza virus-vectored vaccine against Ebola virus replicates in the respiratory tract of vector-immune monkeys and is immunogenic

Alexander Bukreyev; Joshua M. DiNapoli; Lijuan Yang; Brian R. Murphy; Peter L. Collins

We previously used human parainfluenza virus type 3 (HPIV3) as a vector to express the Ebola virus (EBOV) GP glycoprotein. The resulting HPIV3/EboGP vaccine was immunogenic and protective against EBOV challenge in a non-human primate model. However, it remained unclear whether the vaccine would be effective in adults due to preexisting immunity to HPIV3. Here, the immunogenicity of HPIV3/EboGP was compared in HPIV3-naive and HPIV3-immune Rhesus monkeys. After a single dose of HPIV3/EboGP, the titers of EBOV-specific serum ELISA or neutralization antibodies were substantially less in HPIV3-immune animals compared to HPIV3-naive animals. However, after two doses, which were previously determined to be required for complete protection against EBOV challenge, the antibody titers were indistinguishable between the two groups. The vaccine virus appeared to replicate, at a reduced level, in the respiratory tract despite the preexisting immunity. This may reflect the known ability of HPIV3 to re-infect and may also reflect the presence of EBOV GP in the vector virion, which confers resistance to neutralization in vitro by HPIV3-specific antibodies. These data suggest that HPIV3/EboGP will be immunogenic in adults as well as children.


Vaccine | 2009

Delivery to the lower respiratory tract is required for effective immunization with Newcastle disease virus-vectored vaccines intended for humans

Joshua M. DiNapoli; Jerrold M. Ward; Lily I. Cheng; Lijuan Yang; Subbiah Elankumaran; Brian R. Murphy; Siba K. Samal; Peter L. Collins; Alexander Bukreyev

Abstract Newcastle disease virus (NDV), an avian virus, is being evaluated for the development of vectored human vaccines against emerging pathogens. Previous studies of NDV-vectored vaccines in a mouse model suggested their potency after delivery by injection or by the intranasal route. We compared the efficacy of various routes of delivery of NDV-vectored vaccines in a non-human primate model. While delivery of an NDV-vectored vaccine by the combined intranasal/intratracheal route elicited protective immune responses, delivery by the subcutaneous route or the intranasal route alone elicited limited or no protective immune responses, suggesting the necessity for vaccine delivery to the lower respiratory tract. Furthermore, direct comparison of a vaccine based on an NDV mesogenic strain (NDV-BC) with a similarly designed NDV vector based on a modified lentogenic strain carrying a polybasic F cleavage site (NDV-VF) suggested that the two NDV strains were similar in immunogenicity and were equally protective.


Virology Journal | 2008

Impairment of the CD8+ T cell response in lungs following infection with human respiratory syncytial virus is specific to the anatomical site rather than the virus, antigen, or route of infection

Joshua M. DiNapoli; Brian R. Murphy; Peter L. Collins; Alexander Bukreyev

BackgroundA subset of the virus-specific CD8+ cytotoxic T lymphocytes (CTL) isolated from the lungs of mice infected with human respiratory syncytial virus (RSV) is impaired in the ability to secrete interferon γ (IFNγ), a measure of functionality. It was suggested that the impairment specifically suppressed the host cellular immune response, a finding that could help explain the ability of RSV to re-infect throughout life.ResultsTo determine whether this effect is dependent on the virus, the route of infection, or the type of infection (respiratory, disseminated, or localized dermal), we compared the CTL responses in mice following intranasal (IN) infection with RSV or influenza virus or IN or intradermal (ID) infection with vaccinia virus expressing an RSV CTL antigen. The impairment was observed in the lungs after IN infection with RSV, influenza or vaccinia virus, and after a localized ID infection with vaccinia virus. In contrast, we observed a much higher percentage of IFNγ secreting CD8+ lymphocytes in the spleens of infected mice in every case.ConclusionThe decreased functionality of CD8+ CTL is specific to the lungs and is not dependent on the specific virus, viral antigen, or route of infection.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure

Cyril Le Nouën; Thomas McCarty; Michael F. Brown; Melissa Laird Smith; Roberto Lleras; Michael A. Dolan; Masfique Mehedi; Lijuan Yang; Cindy Luongo; Bo Liang; Shirin Munir; Joshua M. DiNapoli; Steffen Mueller; Eckard Wimmer; Peter L. Collins; Ursula J. Buchholz

Significance Recoding viral genomes by numerous synonymous substitutions provided live attenuated vaccine candidates predicted to have a low risk of reversion. However, their stability under selective pressure was largely unknown. We evaluated the phenotypic reversion of representative genome-scale deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. We found that a virus bearing a deoptimized L-polymerase ORF evolved to escape temperature sensitivity restriction by mutations in L and multiple other proteins. Additional analysis revealed that single mutations in the M2-1 ORF were able to substantially escape the restriction imposed by the deoptimized polymerase. Based on this information, we generated a stable deoptimized RSV vaccine candidate with improved attenuation and immunogenicity suitable for additional development. Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates.

Collaboration


Dive into the Joshua M. DiNapoli's collaboration.

Top Co-Authors

Avatar

Peter L. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lijuan Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexander Bukreyev

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Brian R. Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cindy Luongo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Cyril Le Nouën

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masfique Mehedi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge