Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua McElwee is active.

Publication


Featured researches published by Joshua McElwee.


Cell | 2013

Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease.

Bin Zhang; Chris Gaiteri; Liviu-Gabriel Bodea; Zhi Wang; Joshua McElwee; Alexei Podtelezhnikov; Chunsheng Zhang; Tao Xie; Linh Tran; Radu Dobrin; Eugene M. Fluder; Bruce E. Clurman; Stacey Melquist; Manikandan Narayanan; Christine Suver; Hardik Shah; Milind Mahajan; Tammy Gillis; Jayalakshmi S. Mysore; Marcy E. MacDonald; John Lamb; David A. Bennett; Cliona Molony; David J. Stone; Vilmundur Gudnason; Amanda J. Myers; Eric E. Schadt; Harald Neumann; Jun Zhu; Valur Emilsson

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimers disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Nature Medicine | 2015

IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases

Michele W.L. Teng; Edward P. Bowman; Joshua McElwee; Mark J. Smyth; Jean-Laurent Casanova; Andrea M. Cooper; Daniel J. Cua

The cytokine interleukin-12 (IL-12) was thought to have a central role in T cell–mediated responses in inflammation for more than a decade after it was first identified. Discovery of the cytokine IL-23, which shares a common p40 subunit with IL-12, prompted efforts to clarify the relative contribution of these two cytokines in immune regulation. Ustekinumab, a therapeutic agent targeting both cytokines, was recently approved to treat psoriasis and psoriatic arthritis, and related agents are in clinical testing for a variety of inflammatory disorders. Here we discuss the therapeutic rationale for targeting these cytokines, the unintended consequences for host defense and tumor surveillance and potential ways in which these therapies can be applied to treat additional immune disorders.


Blood | 2015

Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations.

Joshua D. Milner; Tiphanie P. Vogel; Lisa R. Forbes; Chi A. Ma; Asbjørg Stray-Pedersen; Julie E. Niemela; Jonathan J. Lyons; Karin R. Engelhardt; Yu Zhang; Nermina Topcagic; Elisha D. O. Roberson; Helen F. Matthews; James W. Verbsky; Trivikram Dasu; Alexander Vargas-Hernández; Nidhy P. Varghese; Kenneth L. McClain; Lina Karam; Karen Nahmod; George Makedonas; Emily M. Mace; Hanne Sørmo Sorte; Gøri Perminow; V. Koneti Rao; Michael P. O’Connell; Susan Price; Helen C. Su; Morgan Butrick; Joshua McElwee; Jason D. Hughes

Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350.


Science | 2015

Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy

Bernice Lo; Kejian Zhang; Wei Lu; Lixin Zheng; Qian Zhang; Chrysi Kanellopoulou; Yu Zhang; Zhiduo Liu; Jill M. Fritz; Rebecca A. Marsh; Ammar Husami; Diane Kissell; Shannon Nortman; Vijaya Chaturvedi; Hilary Haines; Lisa R. Young; Jun Mo; Alexandra H. Filipovich; Jack Bleesing; Peter Mustillo; Michael Stephens; Cesar M. Rueda; Claire A. Chougnet; Kasper Hoebe; Joshua McElwee; Jason D. Hughes; Elif Karakoc-Aydiner; Helen F. Matthews; Susan Price; Helen C. Su

Trafficking from bedside to bench Typically in translational research, a discovery in cell or molecular biology is later exploited to improve patient care. Occasionally, information flows in the opposite direction. Lo et al. found that patients with an autoimmune disorder caused by deficiency of a protein called LRBA responded dramatically to the drug abatacept (see the Perspective by Sansom). Abatacept contains a segment of a potent inhibitory immune receptor, CTLA4. Experiments prompted by this observation revealed the relationship between the two proteins: LRBA controls the intracellular trafficking and degradation of CTLA4. This information may further improve patient care, because other clinically approved drugs have the desired mechanism of action with potentially fewer side effects. Science, this issue p. 436; see also p. 377 A rare autoimmune disorder is caused by aberrant degradation of a potent inhibitory immune receptor. [Also see Perspective by Sansom] Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. The biological role of LRBA in immunologic disease is unknown. We found that patients with LRBA deficiency manifested a dramatic and sustained improvement in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)–immunoglobulin fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune receptor. We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of CTLA4 protein in FoxP3+ regulatory and activated conventional T cells. In LRBA-deficient cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss. These findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and suggest therapies for diseases involving the CTLA4 pathway.


Journal of Experimental Medicine | 2014

Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K

Carrie L. Lucas; Yu Zhang; Anthony Venida; Ying Wang; Jason D. Hughes; Joshua McElwee; Morgan Butrick; Helen F. Matthews; Susan Price; Matthew Biancalana; Xiaochuan Wang; Michael Richards; Tamara Pozos; Isil B. Barlan; Ahmet Ozen; V. Koneti Rao; Helen C. Su; Michael J. Lenardo

Lucas et al. identify humans with a gain-of-function mutation in PIK3R1, encoding the p85α subunit of PI3K. The splice site mutation causes in-frame skipping of exon 11, resulting in altered p85α association with p110δ that stabilizes the catalytic subunit but fails to properly inhibit catalytic activity. The patients have immunodeficiency and lymphoproliferation with skewing of CD8+ T cells toward terminally differentiated and senescent effector cells that have shortened telomeres.


BMC Genetics | 2009

Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies.

Ke Hao; Eugene Chudin; Joshua McElwee; Eric E. Schadt

BackgroundAlthough high-throughput genotyping arrays have made whole-genome association studies (WGAS) feasible, only a small proportion of SNPs in the human genome are actually surveyed in such studies. In addition, various SNP arrays assay different sets of SNPs, which leads to challenges in comparing results and merging data for meta-analyses. Genome-wide imputation of untyped markers allows us to address these issues in a direct fashion.Methods384 Caucasian American liver donors were genotyped using Illumina 650Y (Ilmn650Y) arrays, from which we also derived genotypes from the Ilmn317K array. On these data, we compared two imputation methods: MACH and BEAGLE. We imputed 2.5 million HapMap Release22 SNPs, and conducted GWAS on ~40,000 liver mRNA expression traits (eQTL analysis). In addition, 200 Caucasian American and 200 African American subjects were genotyped using the Affymetrix 500 K array plus a custom 164 K fill-in chip. We then imputed the HapMap SNPs and quantified the accuracy by randomly masking observed SNPs.ResultsMACH and BEAGLE perform similarly with respect to imputation accuracy. The Ilmn650Y results in excellent imputation performance, and it outperforms Affx500K or Ilmn317K sets. For Caucasian Americans, 90% of the HapMap SNPs were imputed at 98% accuracy. As expected, imputation of poorly tagged SNPs (untyped SNPs in weak LD with typed markers) was not as successful. It was more challenging to impute genotypes in the African American population, given (1) shorter LD blocks and (2) admixture with Caucasian populations in this population. To address issue (2), we pooled HapMap CEU and YRI data as an imputation reference set, which greatly improved overall performance. The approximate 40,000 phenotypes scored in these populations provide a path to determine empirically how the power to detect associations is affected by the imputation procedures. That is, at a fixed false discovery rate, the number of cis-eQTL discoveries detected by various methods can be interpreted as their relative statistical power in the GWAS. In this study, we find that imputation offer modest additional power (by 4%) on top of either Ilmn317K or Ilmn650Y, much less than the power gain from Ilmn317K to Ilmn650Y (13%).ConclusionCurrent algorithms can accurately impute genotypes for untyped markers, which enables researchers to pool data between studies conducted using different SNP sets. While genotyping itself results in a small error rate (e.g. 0.5%), imputing genotypes is surprisingly accurate. We found that dense marker sets (e.g. Ilmn650Y) outperform sparser ones (e.g. Ilmn317K) in terms of imputation yield and accuracy. We also noticed it was harder to impute genotypes for African American samples, partially due to population admixture, although using a pooled reference boosts performance. Interestingly, GWAS carried out using imputed genotypes only slightly increased power on top of assayed SNPs. The reason is likely due to adding more markers via imputation only results in modest gain in genetic coverage, but worsens the multiple testing penalties. Furthermore, cis-eQTL mapping using dense SNP set derived from imputation achieves great resolution, and locate associate peak closer to causal variants than conventional approach.


Molecular Systems Biology | 2014

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases

Manikandan Narayanan; Jimmy Huynh; Kai Wang; Xia Yang; Seungyeul Yoo; Joshua McElwee; Bin Zhang; Chunsheng Zhang; John Lamb; Tao Xie; Christine Suver; Cliona Molony; Stacey Melquist; Andrew D. Johnson; Guoping Fan; David J. Stone; Eric E. Schadt; Patrizia Casaccia; Valur Emilsson; Jun Zhu

Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non‐demented controls, we investigated global disruptions in the co‐regulation of genes in two neurodegenerative diseases, late‐onset Alzheimers disease (AD) and Huntingtons disease (HD). We identified networks of differentially co‐expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242‐gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter‐connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter‐connection of these two processes and our key regulator prediction, we generated two brain‐specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10−12), while Dnmt3a KO signature does not (P = 0.017).


Journal of Experimental Medicine | 2017

Combined immunodeficiency and Epstein-Barr virus?induced B cell malignancy in humans with inherited CD70 deficiency

Hassan Abolhassani; Aydan Ikinciogullari; Huie Jing; Stephan Borte; Marcus Buggert; Likun Du; Mami Matsuda-Lennikov; Rosa Romano; Rozina Caridha; Sangeeta Bade; Yu Zhang; Juliet Wairimu Frederiksen; Mingyan Fang; Sevgi Köstel Bal; Sule Haskologlu; Figen Dogu; Nurdan Tacyildiz; Helen F. Matthews; Joshua McElwee; Emma Gostick; David A. Price; Umaimainthan Palendira; Asghar Aghamohammadi; Bertrand Boisson; Nima Rezaei; Annika C. Karlsson; Michael J. Lenardo; Jean-Laurent Casanova; Lennart Hammarström; Stuart G. Tangye

In this study, we describe four patients from two unrelated families of different ethnicities with a primary immunodeficiency, predominantly manifesting as susceptibility to Epstein-Barr virus (EBV)–related diseases. Three patients presented with EBV-associated Hodgkin’s lymphoma and hypogammaglobulinemia; one also had severe varicella infection. The fourth had viral encephalitis during infancy. Homozygous frameshift or in-frame deletions in CD70 in these patients abolished either CD70 surface expression or binding to its cognate receptor CD27. Blood lymphocyte numbers were normal, but the proportions of memory B cells and EBV-specific effector memory CD8+ T cells were reduced. Furthermore, although T cell proliferation was normal, in vitro–generated EBV-specific cytotoxic T cell activity was reduced because of CD70 deficiency. This reflected impaired activation by, rather than effects during killing of, EBV-transformed B cells. Notably, expression of 2B4 and NKG2D, receptors implicated in controlling EBV infection, on memory CD8+ T cells from CD70-deficient individuals was reduced, consistent with their impaired killing of EBV-infected cells. Thus, autosomal recessive CD70 deficiency is a novel cause of combined immunodeficiency and EBV-associated diseases, reminiscent of inherited CD27 deficiency. Overall, human CD70–CD27 interactions therefore play a nonredundant role in T and B cell–mediated immunity, especially for protection against EBV and humoral immunity.


Journal of Clinical Immunology | 2015

Identification of Patients with RAG Mutations Previously Diagnosed with Common Variable Immunodeficiency Disorders

David Buchbinder; Rebecca Baker; Yu Nee Lee; Juan Ravell; Yu Zhang; Joshua McElwee; Diane J. Nugent; Emily M. Coonrod; Jacob D. Durtschi; Nancy H. Augustine; Karl V. Voelkerding; Krisztian Csomos; Lindsey B. Rosen; Sarah K. Browne; Jolan E. Walter; Luigi D. Notarangelo; Harry R. Hill; Attila Kumánovics

PurposeCombined immunodeficiency (CID) presents a unique challenge to clinicians. Two patients presented with the prior clinical diagnosis of common variable immunodeficiency (CVID) disorder marked by an early age of presentation, opportunistic infections, and persistent lymphopenia. Due to the presence of atypical clinical features, next generation sequencing was applied documenting RAG deficiency in both patients.MethodsTwo different genetic analysis techniques were applied in these patients including whole exome sequencing in one patient and the use of a gene panel designed to target genes known to cause primary immunodeficiency disorders (PIDD) in a second patient. Sanger dideoxy sequencing was used to confirm RAG1 mutations in both patients.ResultsTwo young adults with a history of recurrent bacterial sinopulmonary infections, viral infections, and autoimmune disease as well as progressive hypogammaglobulinemia, abnormal antibody responses, lymphopenia and a prior diagnosis of CVID disorder were evaluated. Compound heterozygous mutations in RAG1 (1) c256_257delAA, p86VfsX32 and (2) c1835A>G, pH612R were documented in one patient. Compound heterozygous mutations in RAG1 (1) c.1566G>T, p.W522C and (2) c.2689C>T, p. R897X) were documented in a second patient post-mortem following a fatal opportunistic infection.ConclusionAstute clinical judgment in the evaluation of patients with PIDD is necessary. Atypical clinical findings such as early onset, granulomatous disease, or opportunistic infections should support the consideration of atypical forms of late onset CID secondary to RAG deficiency. Next generation sequencing approaches provide powerful tools in the investigation of these patients and may expedite definitive treatments.


Nature Genetics | 2016

Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number

Jonathan J. Lyons; Xiaomin Yu; Jason D. Hughes; Quang T. Le; Ali Jamil; Yun Bai; Nancy Ho; Ming Zhao; Yihui Liu; Michael P. O'Connell; Neil N. Trivedi; Celeste Nelson; Thomas DiMaggio; Nina Jones; Helen F. Matthews; Katie L. Lewis; Andrew J. Oler; Ryan J. Carlson; Peter D. Arkwright; Celine Hong; Sherene Agama; Todd M. Wilson; Sofie Tucker; Yu Zhang; Joshua McElwee; Maryland Pao; Sarah C Glover; Marc E. Rothenberg; Robert J Hohman; Kelly D. Stone

Elevated basal serum tryptase levels are present in 4–6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase–encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.

Collaboration


Dive into the Joshua McElwee's collaboration.

Top Co-Authors

Avatar

Yu Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Helen F. Matthews

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jonathan J. Lyons

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kelly D. Stone

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Helen C. Su

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Milner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas DiMaggio

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xiaomin Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexandra F. Freeman

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge