Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua P. Nederveen is active.

Publication


Featured researches published by Joshua P. Nederveen.


Frontiers in Physiology | 2015

Satellite cells in human skeletal muscle plasticity

Tim Snijders; Joshua P. Nederveen; Bryon R. McKay; Sophie Joanisse; Lex B. Verdijk; Luc J. C. van Loon; Gianni Parise

Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.


Journal of Cachexia, Sarcopenia and Muscle | 2016

Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men

Joshua P. Nederveen; Sophie Joanisse; Tim Snijders; Victoria Ivankovic; Steven K. Baker; Stuart M. Phillips; Gianni Parise

Skeletal muscle satellite cells (SC) are instrumental in maintenance of muscle fibres, the adaptive responses to exercise, and there is an age‐related decline in SC. A spatial relationship exists between SC and muscle fibre capillaries. In the present study, we aimed to investigate whether chronologic age has an impact on the spatial relationship between SC and muscle fibre capillaries. Secondly, we determined whether this spatial relationship changes in response to a single session of resistance exercise.


Journal of Cachexia, Sarcopenia and Muscle | 2017

Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men

Tim Snijders; Joshua P. Nederveen; Sophie Joanisse; Marika Leenders; Lex B. Verdijk; Luc J. C. van Loon; Gianni Parise

Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Satellite cell activity, without expansion, after nonhypertrophic stimuli

Sophie Joanisse; Bryon R. McKay; Joshua P. Nederveen; Trisha D. Scribbans; Brendon J. Gurd; Jenna B. Gillen; Martin J. Gibala; Mark A. Tarnopolsky; Gianni Parise

The purpose of the present studies was to determine the effect of various nonhypertrophic exercise stimuli on satellite cell (SC) pool activity in human skeletal muscle. Previously untrained men and women (men: 29 ± 9 yr and women: 29 ± 2 yr, n = 7 each) completed 6 wk of very low-volume high-intensity sprint interval training. In a separate study, recreationally active men (n = 16) and women (n = 3) completed 6 wk of either traditional moderate-intensity continuous exercise (n = 9, 21 ± 4 yr) or low-volume sprint interval training (n = 10, 21 ± 2 yr). Muscle biopsies were obtained from the vastus lateralis before and after training. The fiber type-specific SC response to training was determined, as was the activity of the SC pool using immunofluorescent microscopy of muscle cross sections. Training did not induce hypertrophy, as assessed by muscle cross-sectional area, nor did the SC pool expand in any group. However, there was an increase in the number of active SCs after each intervention. Specifically, the number of activated (Pax7(+)/MyoD(+), P ≤ 0.05) and differentiating (Pax7(-)/MyoD(+), P ≤ 0.05) SCs increased after each training intervention. Here, we report evidence of activated and cycling SCs that may or may not contribute to exercise-induced adaptations while the SC pool remains constant after three nonhypertrophic exercise training protocols.


Acta Physiologica | 2015

The effect of exercise mode on the acute response of satellite cells in old men

Joshua P. Nederveen; Sophie Joanisse; C. M. L. Séguin; Kirsten E. Bell; Steven K. Baker; Stuart M. Phillips; Gianni Parise

A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute satellite cell response following different modes of exercise in older adults.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017

Altered muscle satellite cell activation following 16 wk of resistance training in young men

Joshua P. Nederveen; Tim Snijders; Sophie Joanisse; Christopher Wavell; Cameron J. Mitchell; Leeann M. Johnston; Steven K. Baker; Stuart M. Phillips; Gianni Parise

Skeletal muscle satellite cells (SC) play an important role in muscle adaptation. In untrained individuals, SC content and activation status have been observed to increase in response to a single bout of exercise. Muscle fiber characteristics change considerably when resistance exercise is performed chronically, but whether training status affects the activity of SC in response to a single bout of exercise remains unknown. We examined the changes in SC content and activation status following a single bout of resistance exercise, before and following a 16-wk progressive resistance training (RT) program in 14 young (25 ± 3 yr) men. Before and after RT, percutaneous biopsies from the vastus lateralis muscle were taken before a single bout of resistance exercise and after 24 and 72 h of postexercise recovery. Muscle fiber size, capillarization, and SC response were determined by immunohistochemistry. Following RT, there was a greater activation of SC after 24 h in response to a single bout of resistance exercise (Pre, 1.4 ± 0.3; 24 h, 3.1 ± 0.3 Pax7+/MyoD+ cells per 100 fibers) compared with before RT (Pre, 1.4 ± 0.3; 24 h, 2.2 ± 0.3 Pax7+/MyoD+ cells per 100 fibers, P < 0.05); no difference was observed 72 h postexercise. Following 16 wk of RT, MyoD mRNA expression increased from basal to 24 h after the single bout of exercise (P < 0.05); this change was not observed before training. Individual capillary-to-fiber ratio (C/Fi) increased in both type I (1.8 ± 0.3 to 2.0 ± 0.3 C/Fi, P < 0.05) and type II (1.7 ± 0.3 to 2.2 ± 0.3 C/Fi, P < 0.05) fibers in response to RT. After RT, enhanced activation of SC in response to resistance exercise is accompanied by increases in muscle fiber capillarization.


Gerontology | 2017

Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization

Sophie Joanisse; Joshua P. Nederveen; Tim Snijders; Bryon R. McKay; Gianni Parise

Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscles ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults.


The FASEB Journal | 2016

Exercise conditioning in old mice improves skeletal muscle regeneration

Sophie Joanisse; Joshua P. Nederveen; Jeff M. Baker; Tim Snijders; Carlo Iacono; Gianni Parise

Skeletal muscle possesses the ability to regenerate after injury, but this ability is impaired or delayed with aging. Regardless of age, muscle retains the ability to positively respond to stimuli, such as exercise. We examined whether exercise is able to improve regenerative response in skeletal muscle of aged mice. Twenty‐two‐month‐old male C57Bl/6J mice (n = 20) underwent an 8‐wk progressive exercise training protocol [old exercised (O‐Ex) group]. An old sedentary (O‐Sed) and a sedentary young control (Y‐Ctl) group were included. Animals were subjected to injections of cardiotoxin into the tibialis anterior muscle. The tibialis anterior were harvested before [O‐Ex/O‐Sed/ Y‐Ctl control (CTL); n = 6], 10 d (O‐Ex/O‐Sed/Y‐Ctl d 10; n = 8), and 28 d (O‐Ex/O‐Sed/Y‐Ctl d 28; n = 6) postinjection. Average fiber cross‐sectional area was reduced in all groups at d 10 (CTL: O‐Ex: 2499 ± 140; O‐Sed: 2320 ± 165; Y‐Ctl: 2474 ± 269; d 10: O‐Ex: 1191 ± 100; O‐Sed: 1125 ± 99; Y‐Ctl: 1481 ± 167 μm2; P < 0.05), but was restored to control values in O‐Ex and Y‐Ctl groups at d 28 (O‐Ex: 2257 ± 181; Y‐Ctl: 2398 ± 171 μm2; P >0.05). Satellite cell content was greater at CTL in O‐Ex (2.6 ± 0.4 satellite cells/100 fibers) compared with O‐Sed (1.0 ± 0.1% satellite cells/100 fibers; P < 0.05). Exercise conditioning appears to improve ability of skeletal muscle to regenerate after injury in aged mice.—Joanisse, S., Nederveen, J. P., Baker, J. M., Snijders, T., Iacono, C., Parise, G. Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB J. 30, 3256–3268 (2016). www.fasebj.org


PLOS ONE | 2018

Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men

Felipe Damas; Cleiton Augusto Libardi; Carlos Ugrinowitsch; Felipe Cassaro Vechin; Manoel E. Lixandrão; Tim Snijders; Joshua P. Nederveen; Aline V. N. Bacurau; Patricia C. Brum; Valmor Tricoli; Hamilton Roschel; Gianni Parise; Stuart M. Phillips

Satellite cells (SC) are associated with skeletal muscle remodelling after muscle damage and/or extensive hypertrophy resulting from resistance training (RT). We recently reported that early increases in muscle protein synthesis (MPS) during RT appear to be directed toward muscle damage repair, but MPS contributes to hypertrophy with progressive muscle damage attenuation. However, modulations in acute-chronic SC content with RT during the initial (1st-wk: high damage), early (3rd-wk: attenuated damage), and later (10th-wk: no damage) stages is not well characterized. Ten young men (27 ± 1 y, 23.6 ± 1.0 kg·m-2) underwent 10-wks of RT and muscle biopsies (vastus-lateralis) were taken before (Pre) and post (48h) the 1st (T1), 5th (T2) and final (T3) RT sessions to evaluate fibre type specific SC content, cross-sectional area (fCSA) and myonuclear number by immunohistochemistry. We observed RT-induced hypertrophy after 10-wks of RT (fCSA increased ~16% in type II, P < 0.04; ~8% in type I [ns]). SC content increased 48h post-exercise at T1 (~69% in type I [P = 0.014]; ~42% in type II [ns]), and this increase was sustained throughout RT (pre T2: ~65%, ~92%; pre T3: ~30% [ns], ~87%, for the increase in type I and II, respectively, vs. pre T1 [P < 0.05]). Increased SC content was not coupled with changes in myonuclear number. SC have a more pronounced role in muscle repair during the initial phase of RT than muscle hypertrophy resulted from 10-wks RT in young men. Chronic elevated SC pool size with RT is important providing proper environment for future stresses or larger fCSA increases.


Physiological Reports | 2017

Muscle fiber capillarization as determining factor on indices of insulin sensitivity in humans

Tim Snijders; Joshua P. Nederveen; Lex B. Verdijk; Alfons J. H. M. Houben; Gijs H. Goossens; Gianna Parise; Luc J. C. van Loon

To investigate the association between muscle fiber capillarization and indices of insulin sensitivity in healthy older adults. A skeletal muscle biopsy was taken from the m. vastus lateralis of 22 healthy (nondiabetic) male older adults. In addition, all participants underwent an Oral Glucose Tolerance Test (OGTT). Muscle fiber capillarization was assessed by immunohistochemistry. Participants were divided into a group with relatively low (LOW) or high (HIGH) muscle fiber capillarization (capillary‐to‐fiber perimeter exchange (CFPE) index), based on the median value for the entire group. All participants were healthy, nonobese, and had a normal glucose tolerance, according to the individual OGTT results. Whereas no differences in blood glucose concentrations were observed between groups during the OGTT, the postprandial increase in plasma insulin concentrations was significantly greater in the LOW compared to the HIGH muscle fiber capillarization group (P < 0.05). Skeletal muscle fiber capillarization may determine insulin sensitivity in humans.

Collaboration


Dive into the Joshua P. Nederveen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald H. Paterson

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

John M. Kowalchuk

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge