Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua R. Friedman is active.

Publication


Featured researches published by Joshua R. Friedman.


Science | 2012

Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria

Gregory F. Sonnenberg; Laurel A. Monticelli; Theresa Alenghat; Thomas C. Fung; Natalie A. Hutnick; Jun Kunisawa; Naoko Shibata; Stephanie Grunberg; Rohini Sinha; Adam M. Zahm; Mélanie R. Tardif; Taheri Sathaliyawala; Masaru Kubota; Donna L. Farber; Ronald G. Collman; Abraham Shaked; Lynette A. Fouser; David B. Weiner; Philippe A. Tessier; Joshua R. Friedman; Hiroshi Kiyono; Frederic D. Bushman; Kyong-Mi Chang; David Artis

Protecting Against a Barrier Breach In order to coexist peacefully, a “firewall” exists that keeps the commensal bacteria that reside in our intestines and associated lymphoid tissue contained. Several diseases and infections, however, lead to a breach in this barrier, which leads to chronic inflammation and pathology. Sonnenberg et al. (p. 1321) found that in mice, innate lymphoid cells (ILCs) are critically important for the anatomical containment of commensal bacteria in an interleukin-22 (IL-22)–dependent manner. ILC depletion or blockade of IL-22 led to loss of bacterial containment and systemic inflammation. Lymphocytes prevent bacteria from spreading beyond gut-associated lymphoid tissues and causing systemic inflammation. The mammalian intestinal tract is colonized by trillions of beneficial commensal bacteria that are anatomically restricted to specific niches. However, the mechanisms that regulate anatomical containment remain unclear. Here, we show that interleukin-22 (IL-22)–producing innate lymphoid cells (ILCs) are present in intestinal tissues of healthy mammals. Depletion of ILCs resulted in peripheral dissemination of commensal bacteria and systemic inflammation, which was prevented by administration of IL-22. Disseminating bacteria were identified as Alcaligenes species originating from host lymphoid tissues. Alcaligenes was sufficient to promote systemic inflammation after ILC depletion in mice, and Alcaligenes-specific systemic immune responses were associated with Crohn’s disease and progressive hepatitis C virus infection in patients. Collectively, these data indicate that ILCs regulate selective containment of lymphoid-resident bacteria to prevent systemic inflammation associated with chronic diseases.


Nature | 2005

The initiation of liver development is dependent on Foxa transcription factors

Catherine S. Lee; Joshua R. Friedman; James T. Fulmer; Klaus H. Kaestner

The specification of the vertebrate liver is thought to occur in a two-step process, beginning with the establishment of competence within the foregut endoderm for responding to organ-specific signals, followed by the induction of liver-specific genes. On the basis of expression and in vitro studies, it has been proposed that the Foxa transcription factors establish competence by opening compacted chromatin structures within liver-specific target genes. Here we show that Foxa1 and Foxa2 (forkhead box proteins A1 and A2) are required in concert for hepatic specification in mouse. In embryos deficient for both genes in the foregut endoderm, no liver bud is evident and expression of the hepatoblast marker alpha-fetoprotein (Afp) is lost. Furthermore, Foxa1/Foxa2-deficient endoderm cultured in the presence of exogenous fibroblast growth factor 2 (FGF2) fails to initiate expression of the liver markers albumin and transthyretin. Thus, Foxa1 and Foxa2 are required for the establishment of competence within the foregut endoderm and the onset of hepatogenesis.


Genes & Development | 2008

Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development

Nan Gao; John LeLay; Marko Z. Vatamaniuk; Sebastian Rieck; Joshua R. Friedman; Klaus H. Kaestner

The onset of pancreas development in the foregut endoderm is marked by activation of the homeobox gene Pdx1 (IPF1). Pdx1 is essential for the expansion of the pancreatic primordium and the development of endocrine islets. The control of Pdx1 expression has been only partially elucidated. We demonstrate here that the winged-helix transcription factors Foxa1 and Foxa2 co-occupy multiple regulatory domains in the Pdx1 gene. Compound conditional ablation of both Foxa1 and Foxa2 in the pancreatic primordium results in complete loss of Pdx1 expression and severe pancreatic hypoplasia. Mutant mice exhibit hyperglycemia with severely disrupted acinar and islet development, and die shortly after birth. Assessment of developmental markers in the mutant pancreas revealed a failure in the expansion of the pancreatic anlage, a blockage of exocrine and endocrine cell differentiation, and an arrest at the primitive duct stage. Comparing their relative developmental activity, we find that Foxa2 is the major regulator in promoting pancreas development and cell differentiation. Using chromatin immunoprecipitations (ChIP) and ChIP sequencing (ChIPSeq) of fetal pancreas and islet chromatin, we demonstrate that Foxa1 and Foxa2 predominantly occupy a distal enhancer at -6.4 kb relative to the transcriptional start site in the Pdx1 gene. In addition, occupancy of the well-characterized proximal Pdx1 enhancer by Foxa1 and Foxa2 is developmental stage-dependent. Thus, the regulation of Pdx1 expression by Foxa1 and Foxa2 is a key early event controlling the expansion and differentiation of the pancreatic primordia.


PLOS Genetics | 2005

Glucocorticoid Receptor-Dependent Gene Regulatory Networks

Phillip P. Le; Joshua R. Friedman; Jonathan Schug; John Brestelli; J. Brandon Parker; Klaus H. Kaestner

While the molecular mechanisms of glucocorticoid regulation of transcription have been studied in detail, the global networks regulated by the glucocorticoid receptor (GR) remain unknown. To address this question, we performed an orthogonal analysis to identify direct targets of the GR. First, we analyzed the expression profile of mouse livers in the presence or absence of exogenous glucocorticoid, resulting in over 1,300 differentially expressed genes. We then executed genome-wide location analysis on chromatin from the same livers, identifying more than 300 promoters that are bound by the GR. Intersecting the two lists yielded 53 genes whose expression is functionally dependent upon the ligand-bound GR. Further network and sequence analysis of the functional targets enabled us to suggest interactions between the GR and other transcription factors at specific target genes. Together, our results further our understanding of the GR and its targets, and provide the basis for more targeted glucocorticoid therapies.


Gastroenterology | 2010

MicroRNAs Control Intestinal Epithelial Differentiation, Architecture, and Barrier Function

Lindsay B. McKenna; Jonathan Schug; Anastassios Vourekas; Jaime B. McKenna; Nuria C. Bramswig; Joshua R. Friedman; Klaus H. Kaestner

BACKGROUND & AIMS Whereas the importance of microRNA (miRNA) for the development of several tissues is well established, its role in the intestine is unknown. We aimed to quantify the complete miRNA expression profile of the mammalian intestinal mucosa and to determine the contribution of miRNAs to intestinal homeostasis using genetic means. METHODS We determined the miRNA transcriptome of the mouse intestinal mucosa using ultrahigh throughput sequencing. Using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), we identified miRNA-messenger RNA target relationships in the jejunum. We employed gene ablation of the obligatory miRNA-processing enzyme Dicer1 to derive mice deficient for all miRNAs in intestinal epithelia. RESULTS miRNA abundance varies dramatically in the intestinal mucosa, from 1 read per million to 250,000. Of the 453 miRNA families identified, mmu-miR-192 is the most highly expressed in both the small and large intestinal mucosa, and there is a 53% overlap in the top 15 expressed miRNAs between the 2 tissues. The intestinal epithelium of Dicer1(loxP/loxP);Villin-Cre mutant mice is disorganized, with a decrease in goblet cells, a dramatic increase in apoptosis in crypts of both jejunum and colon, and accelerated jejunal cell migration. Furthermore, intestinal barrier function is impaired in Dicer1-deficient mice, resulting in intestinal inflammation with lymphocyte and neutrophil infiltration. Our list of miRNA-messenger RNA targeting relationships in the small intestinal mucosa provides insight into the molecular mechanisms behind the phenotype of Dicer1 mutant mice. CONCLUSIONS We have identified all intestinal miRNAs and shown using gene ablation of Dicer1 that miRNAs play a vital role in the differentiation and function of the intestinal epithelium.


Cell Metabolism | 2014

Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets.

Vasumathi Kameswaran; Nuria C. Bramswig; Lindsay B. McKenna; Melinda Penn; Jonathan Schug; Nicholas J. Hand; Ying Chen; Inchan Choi; Anastassios Vourekas; Kyoung-Jae Won; Chengyang Liu; Kumar Vivek; Ali Naji; Joshua R. Friedman; Klaus H. Kaestner

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by the inability of the insulin-producing β cells in the endocrine pancreas to overcome insulin resistance in peripheral tissues. To determine if microRNAs are involved in the pathogenesis of human T2DM, we sequenced the small RNAs of human islets from diabetic and nondiabetic organ donors. We identified a cluster of microRNAs in an imprinted locus on human chromosome 14q32 that is highly and specifically expressed in human β cells and dramatically downregulated in islets from T2DM organ donors. The downregulation of this locus strongly correlates with hypermethylation of its promoter. Using HITS-CLIP for the essential RISC-component Argonaute, we identified disease-relevant targets of the chromosome 14q32 microRNAs, such as IAPP and TP53INP1, that cause increased β cell apoptosis upon overexpression in human islets. Our results support a role for microRNAs and their epigenetic control by DNA methylation in the pathogenesis of T2DM.


Journal of Clinical Investigation | 2004

Foxa2 regulates multiple pathways of insulin secretion

Kristen A. Lantz; Marko Z. Vatamaniuk; John Brestelli; Joshua R. Friedman; Franz M. Matschinsky; Klaus H. Kaestner

The regulation of insulin secretion by pancreatic beta cells is perturbed in several diseases, including adult-onset (type 2) diabetes and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). The first mouse model for PHHI has a conditional deletion of the gene encoding the winged-helix transcription factor Foxa2 (Forkhead box a2, formerly Hepatocyte nuclear factor 3beta) in pancreatic beta cells. Using isolated islets, we found that Foxa2 deficiency resulted in excessive insulin release in response to amino acids and complete loss of glucose-stimulated insulin secretion. Most PHHI cases are associated with mutations in SUR1 (Sulfonylurea receptor 1) or KIR6.2 (Inward rectifier K(+) channel member 6.2), which encode the subunits of the ATP-sensitive K(+) channel, and RNA in situ hybridization of mutant mouse islets revealed that expression of both genes is Foxa2 dependent. We utilized expression profiling to identify additional targets of Foxa2. Strikingly, one of these genes, Hadhsc, encodes short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase, deficiency of which has been shown to cause PHHI in humans. Hadhsc is a direct target of Foxa2, as demonstrated by cotransfection as well as in vivo chromatin immunoprecipitation experiments using isolated islets. Thus, we have established Foxa2 as an essential activator of genes that function in multiple pathways governing insulin secretion.


Journal of Pediatric Gastroenterology and Nutrition | 2011

Circulating microRNA is a biomarker of pediatric Crohn disease.

Adam M. Zahm; Meena Thayu; Nicholas J. Hand; Amber M. Horner; Mary B. Leonard; Joshua R. Friedman

Objective: The gold standard for the diagnosis and evaluation of Crohn disease (CD) is endoscopy/colonoscopy, although this is invasive, costly, and associated with risks to the patient. Recently, circulating microRNAs (miRNAs) have emerged as promising noninvasive biomarkers. Here, we examined the utility of serum miRNAs as biomarkers of CD in children. Patients and Methods: Studies were conducted using sera samples from patients with pediatric CD, healthy controls, and a comparison group of patients with pediatric celiac disease. Serum miRNA levels were explored initially using a microfluidic quantitative reverse transcription-polymerase chain reaction array platform. Findings were subsequently validated using quantitative reverse transcription-polymerase chain reaction in larger validation sample sets. The diagnostic utility of CD-associated serum miRNA was examined using receiver operating characteristic analysis. Results: A survey of miRNA levels in the sera of control and patients with CD detected significant elevation of 24 miRNAs, 11 of which were chosen for further validation. All of the candidate biomarker miRNAs were confirmed in an independent CD sample set (n = 46). To explore the specificity of the CD-associated miRNAs, they were measured in the sera of patients with celiac disease (n = 12); none were changed compared with healthy controls. Receiver operating characteristic analyses revealed that serum miRNAs have promising diagnostic utility, with sensitivities for CD above 80%. Significant decreases in serum miRNAs were observed in 24 incident patients with pediatric CD after 6 months of treatment. Conclusions: The present study identifies 11 CD-associated serum miRNA with encouraging diagnostic potential. Our findings suggest serum miRNAs may prove useful as noninvasive biomarkers in CD.


Gastroenterology | 2009

The microRNA-30 family is required for vertebrate hepatobiliary development

Nicholas J. Hand; Zankhana R. Master; Steven F. EauClaire; Daniel Weinblatt; Randolph P. Matthews; Joshua R. Friedman

BACKGROUND & AIMS The function of microRNA (miRNA) in liver development is unknown. To address this issue, we characterized miRNA expression in the embryonic mouse liver, performed functional miRNA analysis in zebrafish larvae, and identified novel hepatic miRNA targets. METHODS Hepatic RNA isolated from mice at embryonic days 15.5, 18.5, and postnatal day 2 was hybridized to a mouse miRNA microarray. The microarray results were confirmed by Northern blot hybridization and quantitative reverse-transcription polymerase chain reaction. The spatial distribution of selected miRNAs was determined by in situ hybridization. Functional analysis of miR-30a was performed in zebrafish using antisense-mediated miRNA knockdown. Targets of miR-30a were identified by microarray analysis of gene expression following knockdown in cultured cells. RESULTS A set of 38 differentially expressed fetal hepatic miRNAs was identified. Several of these miRNAs were found to exhibit distinct temporal and spatial patterns of expression in hepatocytes, cholangiocytes, and nonepithelial cells within the liver. Two (miR-30a and miR-30c) are the first examples of ductal plate and bile duct-specific hepatic miRNAs. Knockdown of miR-30a in the zebrafish larva results in defective biliary morphogenesis. Several newly identified targets of miR-30a are known regulators of liver development and function. CONCLUSIONS We have identified miRNAs whose spatial and temporal patterns of expression are suggestive of functional roles in hepatic development and/or function. One of these, the biliary miRNA miR-30a, is required for biliary development in zebrafish. This is the first demonstration of a functional role for miRNA in hepatic organogenesis.


Hepatology | 2009

Hepatic function is preserved in the absence of mature microRNAs

Nicholas J. Hand; Zankhana R. Master; John Le Lay; Joshua R. Friedman

MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression through partial or complete complementarity with target messenger RNAs. The function of miRNAs in normal liver physiology is largely unknown. We address the role of Dicer1 in the differentiated liver. We derived mice lacking Dicer1 function in hepatocytes and assessed the loss of mature miRNA via quantitative polymerase chain reaction. Gene expression microarray analysis was performed on liver RNA from mutant and control mice. Liver sections from mutant and control mice were examined and liver function tests were performed. Mice lacking Dicer1 function in hepatocytes appeared and behaved normally. Despite the loss of mature miRNAs, hepatic function was maintained, as reflected by normal blood glucose, albumin, cholesterol, and bilirubin. However, mutant mice between 2 and 4 months of age exhibited progressive hepatocyte damage with elevated serum alanine aminotransferase and aspartate aminotransferase. Liver mass was increased in mutant mice, as were cellular markers of both proliferation and apoptosis. Microarray analysis indicated large‐scale changes in gene expression, with increased expression of many miRNA targets, particularly imprinted genes. Conclusions: Loss of miRNA processing in the liver at late gestation has a remarkably mild phenotype, suggesting that miRNAs do not play an essential role in hepatic function. However, miRNA deficiency results in hepatocyte apoptosis, hepatocyte regeneration, and portal inflammation. Finally, microarray analysis of gene expression in the mutant liver supports a previously hypothesized role for Dicer1 in the repression of imprinted genes. (HEPATOLOGY 2008.)

Collaboration


Dive into the Joshua R. Friedman's collaboration.

Top Co-Authors

Avatar

Klaus H. Kaestner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. Hand

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Adam M. Zahm

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Schug

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daphne Tsoucas

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Meena Thayu

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge