Joshua R. Thienpont
Queen's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua R. Thienpont.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Neal Michelutti; Jules M. Blais; Mark L. Mallory; Jaclyn Brash; Joshua R. Thienpont; Lynda E. Kimpe; Marianne S. V. Douglas; John P. Smol
Seabirds represent a well documented biological transport pathway of nutrients from the ocean to the land by nesting in colonies and providing organic subsidies (feces, carcasses, dropped food) to these sites. We investigated whether seabirds that feed at different trophic levels vary in their potency as biovectors of metals, which can bioaccumulate through the marine foodweb. Our study site, located on a small island in Arctic Canada, contains the unique scenario of two nearby ponds, one of which receives inputs almost exclusively from upper trophic level piscivores (Arctic terns, Sterna paradisaea) and the other mainly from lower trophic level molluscivores (common eiders, Somateria mollissima). We used dated sediment cores to compare differences in diatoms, metal concentrations and also stable isotopes of nitrogen (δ15N), which reflect trophic position. We show that the seabirds carry species-specific mixtures of metals that are ultimately shunted to their nesting sites. For example, sediments from the tern-affected pond recorded the highest levels of δ15N and the greatest concentrations of metals that are known to bioaccumulate, including Hg and Cd. In contrast, the core from the eider-affected site registered lower δ15N values, but higher concentrations of Pb, Al, and Mn. These metals have been recorded at their greatest concentrations in eiders relative to other seabirds, including Arctic terns. These data indicate that metals may be used to track seabird population dynamics, and that some metal tracers may even be species-specific. The predominance of large seabird colonies on every continent suggests that similar processes are operating along coastlines worldwide.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Michael F. J. Pisaric; Joshua R. Thienpont; Steven V. Kokelj; Holly Nesbitt; Trevor C. Lantz; Steven Solomon; John P. Smol
One of the most ominous predictions related to recent climatic warming is that low-lying coastal environments will be inundated by higher sea levels. The threat is especially acute in polar regions because reductions in extent and duration of sea ice cover increase the risk of storm surge occurrence. The Mackenzie Delta of northwest Canada is an ecologically significant ecosystem adapted to freshwater flooding during spring breakup. Marine storm surges during the open-water season, which move saltwater into the delta, can have major impacts on terrestrial and aquatic systems. We examined growth rings of alder shrubs (Alnus viridis subsp. fruticosa) and diatoms preserved in dated lake sediment cores to show that a recent marine storm surge in 1999 caused widespread ecological changes across a broad extent of the outer Mackenzie Delta. For example, diatom assemblages record a striking shift from freshwater to brackish species following the inundation event. What is of particular significance is that the magnitude of this recent ecological impact is unmatched over the > 1,000-year history of this lake ecosystem. We infer that no biological recovery has occurred in this lake, while large areas of terrestrial vegetation remain dramatically altered over a decade later, suggesting that these systems may be on a new ecological trajectory. As climate continues to warm and sea ice declines, similar changes will likely be repeated in other coastal areas of the circumpolar Arctic. Given the magnitude of ecological changes recorded in this study, such impacts may prove to be long lasting or possibly irreversible.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Jennifer B. Korosi; Samantha M. Burke; Joshua R. Thienpont; John P. Smol
Increased algal blooms are a threat to aquatic ecosystems worldwide, although the combined effects of multiple stressors make it difficult to determine the underlying causes. We explore whether changes in trophic interactions in response to declining calcium (Ca) concentrations, a water quality issue only recently recognized in Europe and North America, can be linked with unexplained bloom production. Using a palaeolimnological approach analysing the remains of Cladocera (herbivorous grazers) and visual reflectance spectroscopically inferred chlorophyll a from the sediments of a Nova Scotia (Canada) lake, we show that a keystone grazer, Daphnia, declined in the early 1990s and was replaced by a less effective grazer, Bosmina, while inferred chlorophyll a levels tripled at constant total phosphorus (TP) concentrations. The decline in Daphnia cannot be attributed to changes in pH, thermal stratification or predation, but instead is linked to declining lakewater [Ca]. The consistency in the timing of changes in Daphnia and inferred chlorophyll a suggests top-down control on algal production, providing, to our knowledge, the first evidence of a link between lakewater [Ca] decline and elevated algal production mediated through the effects of [Ca] decline on Daphnia. [Ca] decline has severe implications for whole-lake food webs, and presents yet another mechanism for potential increases in algal blooms.
Environmental Science & Technology | 2012
Ramin Deison; John P. Smol; Steve V. Kokelj; Michael F. J. Pisaric; Linda E. Kimpe; Alexandre J. Poulain; Hamed Sanei; Joshua R. Thienpont; Jules M. Blais
We examined dated sediment cores from 14 thermokarst affected lakes in the Mackenzie Delta uplands, NT, Arctic Canada, using a case-control analysis to determine how retrogressive thaw slump development from degrading permafrost affected the delivery of mercury (Hg) and organic carbon (OC) to lakes. We show that sediments from the lakes with retrogressive thaw slump development on their shorelines (slump-affected lakes) had higher sedimentation rates and lower total Hg (THg), methyl mercury (MeHg), and lower organic carbon concentrations compared to lakes where thaw slumps were absent (reference lakes). There was no difference in focus-corrected Hg flux to sediments between reference lakes and slump-affected lakes, indicating that the lower sediment Hg concentration in slump-affected lakes was due to dilution by rapid inorganic sedimentation in the slump-affected lakes. Sedimentation rates were inversely correlated with THg concentrations in sediments among the 14 lakes considered, and explained 68% of the variance in THg concentration in surface sediment, further supporting the dilution hypothesis. We observed higher S2 (algal-derived carbon) and particulate organic carbon (POC) concentrations in sediment profiles from reference lakes than in slump lakes, likely because of dilution by inorganic siliciclastic matter in cores from slump-affected lakes. We conclude that retrogressive thaw slump development increases inorganic sedimentation in lakes, and decreases concentrations of organic carbon and associated Hg and MeHg in sediments.
Journal of Paleolimnology | 2012
Kayla Deasley; Jennifer B. Korosi; Joshua R. Thienpont; Steven V. Kokelj; Michael F. J. Pisaric; John P. Smol
An increase in the frequency and intensity of marine storm surges is a predicted consequence of climate warming, and therefore it is important to better understand the biological responses to such events in coastal regions. In late September 1999, a major storm surge resulted in a saltwater intrusion event over a large area of the Mackenzie Delta (NT, Canada) front, causing rapid salinization of lakes on the alluvial plain. Due to a lack of long-term ecological monitoring data in the region, the impacts that the saltwater intrusion event had on the biota of affected lakes were unknown. We used high-resolution paleolimnological approaches to reconstruct past assemblage changes in Cladocera from impacted Lake DZO-29 (unofficial name) in order to determine how different cladoceran species responded to a major increase in lake salinity following the 1999 storm surge. Camptocercus were extirpated from the lake following the saltwater intrusion and have not recovered. We also observed an initial decrease in Alona relative abundance following the marine flooding, likely reflecting a loss of A. quadrangularis, A. barbulata, and A. costata from the lake. A. circumfimbriata, Chydorus biovatus, C. brevilabris, and Bosmina spp. were abundant both before and after the saltwater intrusion, and Paralona pigra was present following the storm surge, but not prior to it. The most notable shift in Cladocera in the recent sedimentary record, however, occurred much earlier, with an increase in pelagic Bosmina taxa and a subsequent decrease in the benthic/littoral taxa Chydorus and Camptocercus, an assemblage shift that is consistent with a response to climate warming in this region, and strongly correlated to other changes in the lake inferred to be as a result of regional warming.
Proceedings of the Royal Society B: Biological Sciences | 2016
Joshua R. Thienpont; Jennifer B. Korosi; Kathryn E. Hargan; Trisha Williams; David C. Eickmeyer; Linda E. Kimpe; Michael J. Palmer; John P. Smol; Jules M. Blais
Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed
PLOS ONE | 2013
Joshua R. Thienpont; Steven V. Kokelj; Jennifer B. Korosi; Elisa S. Cheng; Cyndy M. Desjardins; Linda E. Kimpe; Jules M. Blais; Michael F. J. Pisaric; John P. Smol
1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999.
The Holocene | 2012
Joshua R. Thienpont; Daniel Johnson; Holly Nesbitt; Steven V. Kokelj; Michael F. J. Pisaric; John P. Smol
Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems.
Science of The Total Environment | 2016
Jennifer B. Korosi; David C. Eickmeyer; Joshua R. Thienpont; Michael J. Palmer; Linda E. Kimpe; Jules M. Blais
Because of decreasing sea-ice extent and increasingly frequent Arctic storms, low-lying coastal ecosystems are at heightened risk from marine storm surges. A major Arctic storm event originating in the Beaufort Sea in September 1999 resulted in the flooding of a large area of the outer alluvial plain of the Mackenzie Delta (Northwest Territories, Canada), and has been previously shown to have caused unprecedented impacts on the terrestrial ecosystems on a regional scale. We use diatoms preserved in lake sediment cores to gain a landscape perspective on the impact of the storm on freshwater systems, and to determine if other such events have occurred in the recent past. Our results indicate that five lakes located at the coastal edge of the low-lying Mackenzie Delta show strong, synchronous, and previously unobserved increases in the relative abundance of brackish-water diatom taxa coincident with the timing of the 1999 storm surge. These changes were not observed at a control site located farther inland. The degree to which the storm surge impacted the chemical and biological limnology of the lakes varied, and was not explained by measured physical variables, suggesting the degree of impact is likely related to a combination of factors including distance from the coast, the size:volume ratio of the lake and its catchment, and water residence time. We show that the 1999 storm surge resulted in unmatched broadscale impacts on the freshwater ecosystems of the outer Mackenzie Delta, and that while minimal recovery may be occurring in some of the systems, the lakes studied remain chemically and biologically impacted more than a decade after the inundation event.
EPIC3Antarctic Science, CAMBRIDGE UNIV PRESS | 2016
Frédéric Bouchard; Lauren A. MacDonald; Kevin W. Turner; Joshua R. Thienpont; Andrew S. Medeiros; Boris K. Biskaborn; Jennifer B. Korosi; Roland I. Hall; Reinhard Pienitz; Brent B. Wolfe
Remote mining operations in Canadas Northwest Territories and Nunavut are supported by a 600 km winter road, which spans the transition from subarctic boreal forest in Yellowknife to low Arctic tundra. Each year, thousands of truckloads of fuel, large equipment, and other heavy loads are hauled up the winter road. We investigated whether diesel emissions from commercial truck traffic is a major source of metals and polycyclic aromatic compounds (PACs) to aquatic ecosystems along the winter road. In March 2014, at the end of the hauling season, we collected integrated snow samples, water, and sediment from nine lakes located along the winter road, as well as from six lakes located within the city of Yellowknife. Examination of PAC composition and diagnostic ratios in snow samples showed that wildfires are an important source of PACs to lakes along the winter road, while anthropogenic sources are more prevalent in snow from Yellowknife lakes. Concentrations of PACs, including those associated with diesel emissions, were variable in snow, water, and sediment across all sites. The highest concentrations of PACs in snow were reported in winter road lakes located in the subarctic boreal forest, where forest fires are common. No compositional differences were observed for PACs in sediment and water samples between Yellowknife and winter road lakes. We did not observe any evidence of metal contamination in snow collected along the winter road, and metal concentrations in snow from winter road sites were consistently lower than Yellowknife sites. Our results show that a high contribution of PACs from natural sources can obscure potential contributions from diesel traffic emissions along the winter road.