Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua S. Kaminker is active.

Publication


Featured researches published by Joshua S. Kaminker.


Science | 2007

The genomic landscapes of human breast and colorectal cancers.

Laura D. Wood; D. Williams Parsons; Siân Jones; Jimmy Lin; Tobias Sjöblom; Rebecca J. Leary; Dong Shen; Simina M. Boca; Thomas D. Barber; Janine Ptak; Natalie Silliman; Steve Szabo; Zoltan Dezso; Vadim Ustyanksky; Tatiana Nikolskaya; Yuri Nikolsky; Rachel Karchin; Paul Wilson; Joshua S. Kaminker; Zemin Zhang; Randal Croshaw; Joseph Willis; Dawn Dawson; Michail Shipitsin; James K V Willson; Saraswati Sukumar; Kornelia Polyak; Ben Ho Park; Charit L. Pethiyagoda; P.V. Krishna Pant

Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.


Nature | 2010

Diverse somatic mutation patterns and pathway alterations in human cancers.

Zhengyan Kan; Bijay S. Jaiswal; Jeremy Stinson; Vasantharajan Janakiraman; Deepali Bhatt; Howard M. Stern; Peng Yue; Peter M. Haverty; Richard Bourgon; Jianbiao Zheng; Martin Moorhead; Subhra Chaudhuri; Lynn P. Tomsho; Brock A. Peters; Kanan Pujara; Shaun Cordes; David P. Davis; Victoria Carlton; Wenlin Yuan; Li Li; Weiru Wang; Charles Eigenbrot; Joshua S. Kaminker; David A. Eberhard; Paul Waring; Stephan C. Schuster; Zora Modrusan; Zemin Zhang; David Stokoe; Frederic J. de Sauvage

The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.


Nature | 2011

Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7

Ingrid E. Wertz; Saritha Kusam; Cynthia Lam; Toru Okamoto; Wendy Sandoval; Daniel J. Anderson; Elizabeth Helgason; James A. Ernst; Mike Eby; Jinfeng Liu; Lisa D. Belmont; Joshua S. Kaminker; Karen O’Rourke; Kanan Pujara; Pawan Bir Kohli; Adam R. Johnson; Mark L. Chiu; Jennie R. Lill; Peter K. Jackson; Wayne J. Fairbrother; Somasekar Seshagiri; Mary J. C. Ludlam; Kevin G. Leong; Erin C. Dueber; Heather Maecker; David C. S. Huang; Vishva M. Dixit

Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms. The strategies that resistant tumour cells use to evade death induced by antitubulin agents are also unclear. Here we show that the pro-survival protein MCL1 (ref. 3) is a crucial regulator of apoptosis triggered by antitubulin chemotherapeutics. During mitotic arrest, MCL1 protein levels decline markedly, through a post-translational mechanism, potentiating cell death. Phosphorylation of MCL1 directs its interaction with the tumour-suppressor protein FBW7, which is the substrate-binding component of a ubiquitin ligase complex. The polyubiquitylation of MCL1 then targets it for proteasomal degradation. The degradation of MCL1 was blocked in patient-derived tumour cells that lacked FBW7 or had loss-of-function mutations in FBW7, conferring resistance to antitubulin agents and promoting chemotherapeutic-induced polyploidy. Additionally, primary tumour samples were enriched for FBW7 inactivation and elevated MCL1 levels, underscoring the prominent roles of these proteins in oncogenesis. Our findings suggest that profiling the FBW7 and MCL1 status of tumours, in terms of protein levels, messenger RNA levels and genetic status, could be useful to predict the response of patients to antitubulin chemotherapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes

Marcin Kowanetz; Xiumin Wu; John C. Lee; Martha Tan; Thijs J. Hagenbeek; Xueping Qu; Lanlan Yu; Jed Ross; Nina Korsisaari; Tim C. Cao; Hani Bou-Reslan; Dara Y. Kallop; Robby M. Weimer; Mary J. C. Ludlam; Joshua S. Kaminker; Zora Modrusan; Nicholas van Bruggen; Franklin Peale; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Priming of the organ-specific premetastatic sites is thought to be an important yet incompletely understood step during metastasis. In this study, we show that the metastatic tumors we examined overexpress granulocyte-colony stimulating factor (G-CSF), which expands and mobilizes Ly6G+Ly6C+ granulocytes and facilitates their subsequent homing at distant organs even before the arrival of tumor cells. Moreover, G-CSF–mobilized Ly6G+Ly6C+ cells produce the Bv8 protein, which has been implicated in angiogenesis and mobilization of myeloid cells. Anti–G-CSF or anti-Bv8 antibodies significantly reduced lung metastasis. Transplantation of Bv8 null fetal liver cells into lethally irradiated hosts also reduced metastasis. We identified an unexpected role for Bv8: the ability to stimulate tumor cell migration through activation of one of the Bv8 receptors, prokineticin receptor (PKR)-1. Finally, we show that administration of recombinant G-CSF is sufficient to increase the numbers of Ly6G+Ly6C+ cells in organ-specific metastatic sites and results in enhanced metastatic ability of several tumors.


Blood | 2010

Identification and functional analysis of endothelial tip cell–enriched genes

Raquel del Toro; Claudia Prahst; Thomas Mathivet; Geraldine Siegfried; Joshua S. Kaminker; Bruno Larrivée; Christiane Bréant; Antonio Duarte; Nobuyuki Takakura; Akiyoshi Fukamizu; Josef M. Penninger; Anne Eichmann

Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.


Blood | 2010

Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching

Geraldine Strasser; Joshua S. Kaminker; Marc Tessier-Lavigne

The development of the vertebrate vascular system is mediated by both genetic patterning of vessels and by angiogenic sprouting in response to hypoxia. Both of these processes depend on the detection of environmental guidance cues by endothelial cells. A specialized subtype of endothelial cell known as the tip cell is thought to be involved in the detection and response to these cues, but the molecular signaling pathways used by tip cells to mediate tissue vascularization remain largely uncharacterized. To identify genes critical to tip cell function, we have developed a method to isolate them using laser capture microdissection, permitting comparison of RNA extracted from endothelial tip cells with that of endothelial stalk cells using microarray analysis. Genes enriched in tip cells include ESM-1, angiopoietin-2, and SLP-76. CXCR4, a receptor for the chemokine stromal-cell derived factor-1, was also identified as a tip cell-enriched gene, and we provide evidence for a novel role for this receptor in mediating tip cell morphology and vascular patterning in the neonatal retina.


Journal of Biological Chemistry | 2013

Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability

Benjamin E.L. Lauffer; Robert Mintzer; Rina Fong; Susmith Mukund; Christine Tam; Inna Zilberleyb; Birgit Flicke; Allegra Ritscher; Grazyna Fedorowicz; Roxanne Vallero; Daniel F. Ortwine; Janet Gunzner; Zora Modrusan; Lars Neumann; Christopher M. Koth; Patrick J. Lupardus; Joshua S. Kaminker; Christopher E. Heise; Pascal Steiner

Background: The effect of HDAC inhibitor kinetic properties on biological function is currently unknown. Results: The kinetic rate constants of HDAC inhibitors differentially affect histone acetylation, cell viability, and gene expression. Conclusion: Evaluating HDAC inhibitor properties using histone acetylation is not predictive of their function on cellular activity. Significance: Characterizing the biological effect of different HDAC inhibitors will help to evaluate their clinical utility. Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury

Trent Watkins; Bei Wang; Sarah Huntwork-Rodriguez; Jing Yang; Zhiyu Jiang; Jeffrey Eastham-Anderson; Zora Modrusan; Joshua S. Kaminker; Marc Tessier-Lavigne; Joseph W. Lewcock

The cell intrinsic factors that determine whether a neuron regenerates or undergoes apoptosis in response to axonal injury are not well defined. Here we show that the mixed-lineage dual leucine zipper kinase (DLK) is an essential upstream mediator of both of these divergent outcomes in the same cell type. Optic nerve crush injury leads to rapid elevation of DLK protein, first in the axons of retinal ganglion cells (RGCs) and then in their cell bodies. DLK is required for the majority of gene expression changes in RGCs initiated by injury, including induction of both proapoptotic and regeneration-associated genes. Deletion of DLK in retina results in robust and sustained protection of RGCs from degeneration after optic nerve injury. Despite this improved survival, the number of axons that regrow beyond the injury site is substantially reduced, even when the tumor suppressor phosphatase and tensin homolog (PTEN) is deleted to enhance intrinsic growth potential. These findings demonstrate that these seemingly contradictory responses to injury are mechanistically coupled through a DLK-based damage detection mechanism.


Nucleic Acids Research | 2007

CanPredict: a computational tool for predicting cancer-associated missense mutations

Joshua S. Kaminker; Yan Zhang; Colin K. Watanabe; Zemin Zhang

Various cancer genome projects are underway to identify novel mutations that drive tumorigenesis. While these screens will generate large data sets, the majority of identified missense changes are likely to be innocuous passenger mutations or polymorphisms. As a result, it has become increasingly important to develop computational methods for distinguishing functionally relevant mutations from other variations. We previously developed an algorithm, and now present the web application, CanPredict (http://www.canpredict.org/ or http://www.cgl.ucsf.edu/Research/genentech/canpredict/), to allow users to determine if particular changes are likely to be cancer-associated. The impact of each change is measured using two known methods: Sorting Intolerant From Tolerant (SIFT) and the Pfam-based LogR.E-value metric. A third method, the Gene Ontology Similarity Score (GOSS), provides an indication of how closely the gene in which the variant resides resembles other known cancer-causing genes. Scores from these three algorithms are analyzed by a random forest classifier which then predicts whether a change is likely to be cancer-associated. CanPredict fills an important need in cancer biology and will enable a large audience of biologists to determine which mutations are the most relevant for further study.


Cancer Research | 2007

Distinguishing cancer-associated missense mutations from common polymorphisms

Joshua S. Kaminker; Yan Zhang; Allison Waugh; Peter M. Haverty; Brock A. Peters; Jeremy Stinson; William F. Forrest; J. Fernando Bazan; Somasekar Seshagiri; Zemin Zhang

Missense variants are commonly identified in genomic sequence but only a small fraction directly contribute to oncogenesis. The ability to distinguish those missense changes that contribute to cancer progression from those that do not is a difficult problem usually only accomplished through functional in vivo analyses. Using two computational algorithms, Sorting Intolerant from Tolerant (SIFT) and the Pfam-based LogR.E-value method, we have identified features that distinguish cancer-associated missense mutations from other classes of missense change. Our data reveal that cancer mutants behave similarly to Mendelian disease mutations, but are clearly distinct from either complex disease mutations or common single-nucleotide polymorphisms. We show that both activating and inactivating oncogenic mutations are predicted to be deleterious, although activating changes are likely to increase protein activity. Using the Gene Ontology and data from the SIFT and LogR.E-value metrics, a classifier was built that predicts cancer-associated missense mutations with a very low false-positive rate. The classifier does remarkably well in a number of different experiments designed to distinguish polymorphisms from true cancer-associated mutations. We also show that recurrently observed mutations are much more likely to be predicted to be cancer-associated than rare mutations, suggesting that our classifier will be useful in distinguishing causal from passenger mutations. In addition, from an expressed sequence tag-based screen, we identified a previously unknown germ line change (P1104A) in tumor tissues that is predicted to disrupt the function of the TYK2 protein. The data presented here show that this novel bioinformatics approach to classifying cancer-associated variants is robust and can be used for large-scale analyses.

Collaboration


Dive into the Joshua S. Kaminker's collaboration.

Researchain Logo
Decentralizing Knowledge