Joshua Stipancic
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua Stipancic.
Journal of Advanced Transportation | 2017
Ting Fu; Joshua Stipancic; Sohail Zangenehpour; Luis F. Miranda-Moreno; Nicolas Saunier
Vision-based monitoring systems using visible spectrum (regular) video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.
Transportation Research Record | 2014
Shaun Burns; Luis F. Miranda-Moreno; Joshua Stipancic; Nicolas Saunier; Karim Ismail
Numerous studies of geocoding systems have been used to assign geographical coordinates to incident reports identified simply with textual address references. These studies have typically focused on the level of accuracy achieved by various geocoding systems and found that acceptable results can be achieved. Depending on the quality of the input data, a match rate between 70% and 83% can be expected, with varying levels of accuracy. However, few studies have looked at the potential of freely available online geocoding services to spatially locate traffic crash records. It is proposed that although limitations currently exist, services such as the Google Maps API provide sufficient functionality and adequate accuracy for use with a wide variety of geocoding applications. A case study used traffic crash records from a municipality in the province of Quebec, Canada, with the goal of quantifying the geo coding results. It was found that although a competitive match rate was obtained, manual revision was required to ensure that the results returned by the geocoder referred to the same intersection that existed in the input address field.
Accident Analysis & Prevention | 2018
Junhua Wang; Boya Liu; Ting Fu; Shuo Liu; Joshua Stipancic
The occurrence of secondary accidents leads to traffic congestion and road safety issues. Secondary accident prevention has become a major consideration in traffic incident management. This paper investigates the location and time of a potential secondary accident after the occurrence of an initial traffic accident. With accident data and traffic loop data collected over three years from California interstate freeways, a shock wave-based method was introduced to identify secondary accidents. A linear regression model and two machine learning algorithms, including a back-propagation neural network (BPNN) and a least squares support vector machine (LSSVM), were implemented to explore the distance and time gap between the initial and secondary accidents using inputs of crash severity, violation category, weather condition, tow away, road surface condition, lighting, parties involved, traffic volume, duration, and shock wave speed generated by the primary accident. From the results, the linear regression model was inadequate in describing the effect of most variables and its goodness-of-fit and accuracy in prediction was relatively poor. In the training programs, the BPNN and LSSVM demonstrated adequate goodness-of-fit, though the BPNN was superior with a higher CORR and lower MSE. The BPNN model also outperformed the LSSVM in time prediction, while both failed to provide adequate distance prediction. Therefore, the BPNN model could be used to forecast the time gap between initial and secondary accidents, which could be used by decision makers and incident management agencies to prevent or reduce secondary collisions.
Accident Analysis & Prevention | 2017
Junhua Wang; Shuaiyi Sun; Shouen Fang; Ting Fu; Joshua Stipancic
This paper aims to both identify the factors affecting driver drowsiness and to develop a real-time drowsy driving probability model based on virtual Location-Based Services (LBS) data obtained using a driving simulator. A driving simulation experiment was designed and conducted using 32 participant drivers. Collected data included the continuous driving time before detection of drowsiness and virtual LBS data related to temperature, time of day, lane width, average travel speed, driving time in heavy traffic, and driving time on different roadway types. Demographic information, such as nap habit, age, gender, and driving experience was also collected through questionnaires distributed to the participants. An Accelerated Failure Time (AFT) model was developed to estimate the driving time before detection of drowsiness. The results of the AFT model showed driving time before drowsiness was longer during the day than at night, and was longer at lower temperatures. Additionally, drivers who identified as having a nap habit were more vulnerable to drowsiness. Generally, higher average travel speeds were correlated to a higher risk of drowsy driving, as were longer periods of low-speed driving in traffic jam conditions. Considering different road types, drivers felt drowsy more quickly on freeways compared to other facilities. The proposed model provides a better understanding of how driver drowsiness is influenced by different environmental and demographic factors. The model can be used to provide real-time data for the LBS-based drowsy driving warning system, improving past methods based only on a fixed driving.
Accident Analysis & Prevention | 2016
Joshua Stipancic; Sohail Zangenehpour; Luis F. Miranda-Moreno; Nicolas Saunier; Marie-Axelle Granié
In the literature, a crash-based modeling approach has long been used to evaluate the factors that contribute to cyclist injury risk at intersections. However, this approach has been criticized as crashes are required to occur before contributing factors can be identified and countermeasures can be implemented. Moreover, human factors related to dangerous behaviors are difficult to evaluate using crash-based methods. As an alternative, surrogate safety measures have been developed to address the issue of reliance on crash data. Despite recent developments, few methodologies and little empirical evidence exist on bicycle-vehicle interactions at intersections using video-based data and statistical analyses to identify associated factors. This study investigates bicycle-vehicle conflict severity and evaluates the impact of different factors, including gender, on cyclist risk at urban intersections with cycle tracks. A segmented ordered logit model is used to evaluate post-encroachment time between cyclists and vehicles. Video data was collected at seven intersections in Montreal, Canada. Road user trajectories were automatically extracted, classified, and filtered using a computer vision software to yield 1514 interactions. The discrete choice variable was generated by dividing post-encroachment time into normal interactions, conflicts, and dangerous conflicts. Independent variables reflecting attributes of the cyclist, vehicle, and environment were extracted either automatically or manually. Results indicated that an ordered model is appropriate for analyzing traffic conflicts and identifying key factors. Furthermore, exogenous segmentation was beneficial in comparing different segments of the population within a single model. Male cyclists, with all else being equal, were less likely than female cyclists to be involved in conflicts and dangerous conflicts at the studied intersections. Bicycle and vehicle speed, along with the time of the conflict relative to the red light phase, were other significant factors in conflict severity. These results will contribute to and further the understanding of gender differences in cycling within North America.
Accident Analysis & Prevention | 2018
Joshua Stipancic; Luis F. Miranda-Moreno; Nicolas Saunier
Network screening is a key element in identifying and prioritizing hazardous sites for engineering treatment. Traditional screening methods have used observed crash frequency or severity ranking criteria and statistical modelling approaches, despite the fact that crash-based methods are reactive. Alternatively, surrogate safety measures (SSMs) have become popular, making use of new data sources including video and, more rarely, GPS data. The purpose of this study is to examine vehicle manoeuvres of braking and accelerating extracted from a large quantity of GPS data collected using the smartphones of regular drivers, and to explore their potential as SSMs through correlation with historical collision frequency and severity across different facility types. GPS travel data was collected in Quebec City, Canada in 2014. The sample for this study contained over 4000 drivers and 21,000 trips. Hard braking (HBEs) and accelerating events (HAEs) were extracted and compared to historical crash data using Spearmans correlation coefficient and pairwise Kolmogorov-Smirnov tests. Both manoeuvres were shown to be positively correlated with crash frequency at the link and intersection levels, though correlations were much stronger when considering intersections. Locations with more braking and accelerating also tend to have more collisions. Concerning severity, higher numbers of vehicle manoeuvres were also related to increased collision severity, though this relationship was not always statistically significant. The inclusion of severity testing, which is an independent dimension of safety, represents a substantial contribution to the existing literature. Future work will focus on developing a network screening model that incorporates these SSMs.
Transportation Research Record | 2017
Joshua Stipancic; Luis F. Miranda-Moreno; Nicolas Saunier
Mobility and safety are the two greatest priorities within any transportation system. Ideally, traffic flow enhancement and crash reductions could occur simultaneously, although their relationship is likely complex. The impact of traffic congestion and flow on road safety requires more empirical evidence to determine the direction and magnitude of the relationship. The study of this relationship is an ideal application for instrumented vehicles and surrogate safety measures (SSMs). The purpose of this paper is to correlate quantitative measures of congestion and flow derived from smartphone-collected GPS data with collision frequency and severity at the network scale. GPS travel data were collected in Quebec City, Quebec, Canada, and the sample for this study contained data for more than 4,000 drivers and 20,000 trips. The extracted SSMs, the congestion index (CI), average speed ( V ), and the coefficient of variation of speed (CVS) were compared with crash data collected over an 11-year period from 2000 to 2010 with the use of Spearman’s correlation coefficient and pairwise Kolmogorov–Smirnov tests. The correlations with crash frequency were weak to moderate. CI was shown to be positively correlated with crash frequency, and the relationship to crash severity was found to be nonmonotonous. Higher congestion levels were related to crashes with major injuries, whereas low congestion levels were related to crashes with minor injuries and fatalities. Surprisingly, V was found to be negatively correlated with crash frequency and had no conclusive statistical relationship to crash severity. CVS was positively correlated with crash frequency and statistically related to increased crash severity. Future work will focus on the development of a network screening model that incorporates these SSMs.
Accident Analysis & Prevention | 2018
Joshua Stipancic; Luis F. Miranda-Moreno; Nicolas Saunier; Aurelie Labbe
Improving road safety requires accurate network screening methods to identify and prioritize sites in order to maximize the effectiveness of implemented countermeasures. In screening, hotspots are commonly identified using statistical models and ranking criteria derived from observed crash data. However, collision databases are subject to errors, omissions, and underreporting. More importantly, crash-based methods are reactive and require years of crash data. With the arrival of new technologies including Global Positioning System (GPS) trajectory data, proactive surrogate safety methods have gained popularity as an alternative approach for screening. GPS-enabled smartphones can collect reliable and spatio-temporally rich driving data from regular drivers using an inexpensive, simple, and user-friendly tool. However, few studies to date have analyzed large volumes of smartphone GPS data and considered surrogate-safety modelling techniques for network screening. The purpose of this paper is to propose a surrogate safety screening approach based on smartphone GPS data and a Full Bayesian modelling framework. After processing crash data and GPS data collected in Quebec City, Canada, several surrogate safety measures (SSMs), including vehicle manoeuvres (hard braking) and measures of traffic flow (congestion, average speed, and speed variation), were extracted. Then, spatial crash frequency models incorporating the extracted SSMs were proposed and validated. A Latent Gaussian Spatial Model was estimated using the Integrated Nested Laplace Approximation (INLA) technique. While the INLA Negative Binomial models outperformed alternative models, incorporating spatial correlations provided the greatest improvement in model fit. Relationships between SSMs and crash frequency established in previous studies were generally supported by the modelling results. For example, hard braking, congestion, and speed variation were all positively linked to crash counts at the intersection level. Network screening based on SSMs presents a substantial contribution to the field of road safety and works towards the elimination of crash data in evaluation and monitoring.
Transportation Letters | 2017
Joshua Stipancic; Luis F. Miranda-Moreno; Aurelie Labbe; Nicolas Saunier
Abstract Congestion is a dynamic phenomenon with elements of space and time, making it a promising application of probe vehicles. The purpose of this paper is to measure and visualize the magnitude and variability of congestion on the network scale using smartphone GPS travel data. The sample of data collected in Quebec City contained over 4000 drivers and 21,000 trips. The congestion index (CI) was calculated at the link level for each hour of the peak period and congestion was visualized at aggregate and disaggregate levels. Results showed that each peak period can be viewed as having an onset period and dissipation period lasting one hour. Congestion in the evening is greater and more dispersed than in the morning. Motorways, arterials, and collectors contribute most to peak period congestion, while residential links contribute little. Further analysis of the CI data is required for practical implementation in network planning or congestion remediation.
PLOS ONE | 2017
Junhua Wang; Yumeng Kong; Ting Fu; Joshua Stipancic
This paper presents the use of the Aimsun microsimulation program to simulate vehicle violating behaviors and observe their impact on road traffic crash risk. Plugins for violations of speeding, slow driving, and abrupt stopping were developed using Aimsun’s API and SDK module. A safety analysis plugin for investigating probability of rear-end collisions was developed, and a method for analyzing collision risk is proposed. A Fuzzy C-mean Clustering algorithm was developed to identify high risk states in different road segments over time. Results of a simulation experiment based on the G15 Expressway in Shanghai showed that abrupt stopping had the greatest impact on increasing collision risk, and the impact of violations increased with traffic volume. The methodology allows for the evaluation and monitoring of risks, alerting of road hazards, and identification of hotspots, and could be applied to the operations of existing facilities or planning of future ones.