Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua T. Dearborn is active.

Publication


Featured researches published by Joshua T. Dearborn.


Journal of Clinical Investigation | 2013

Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

Erik S. Musiek; Miranda M. Lim; Guangrui Yang; Adam Q. Bauer; Laura Qi; Yool Lee; Jee Hoon Roh; Xilma R. Ortiz-Gonzalez; Joshua T. Dearborn; Joseph P. Culver; Erik D. Herzog; John B. Hogenesch; David F. Wozniak; Krikor Dikranian; Benoit I. Giasson; David R. Weaver; David M. Holtzman; Garret A. FitzGerald

Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator-like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration.


Neurobiology of Disease | 2012

Core features of frontotemporal dementia recapitulated in progranulin knockout mice.

Nupur Ghoshal; Joshua T. Dearborn; David F. Wozniak; Nigel J. Cairns

Frontotemporal dementia (FTD) is typified by behavioral and cognitive changes manifested as altered social comportment and impaired memory performance. To investigate the neurodegenerative consequences of progranulin gene (GRN) mutations, which cause an inherited form of FTD, we used previously generated progranulin knockout mice (Grn-/-). Specifically, we characterized two cohorts of early and later middle-aged wild type and knockout mice using a battery of tests to assess neurological integrity and behavioral phenotypes analogous to FTD. The Grn-/- mice exhibited reduced social engagement and learning and memory deficits. Immunohistochemical approaches were used to demonstrate the presence of lesions characteristic of frontotemporal lobar degeneration (FTLD) with GRN mutation including ubiquitination, microgliosis, and reactive astrocytosis, the pathological substrate of FTD. Importantly, Grn-/- mice also have decreased overall survival compared to Grn+/+ mice. These data suggest that the Grn-/- mouse reproduces some core features of FTD with respect to behavior, pathology, and survival. This murine model may serve as a valuable in vivo model of FTLD with GRN mutation through which molecular mechanisms underlying the disease can be further dissected.


The Journal of Neuroscience | 2014

Anti-ApoE Antibody Given after Plaque Onset Decreases Aβ Accumulation and Improves Brain Function in a Mouse Model of Aβ Amyloidosis

Fan Liao; Yukiko Hori; Eloise Hudry; Adam Q. Bauer; Hong Jiang; Thomas E. Mahan; Katheryn B. Lefton; Tony J. Zhang; Joshua T. Dearborn; Jungsu Kim; Joseph P. Culver; Rebecca A. Betensky; David F. Wozniak; Bradley T. Hyman; David M. Holtzman

Apolipoprotein E (apoE) is the strongest known genetic risk factor for late onset Alzheimers disease (AD). It influences amyloid-β (Aβ) clearance and aggregation, which likely contributes in large part to its role in AD pathogenesis. We recently found that HJ6.3, a monoclonal antibody against apoE, significantly reduced Aβ plaque load when given to APPswe/PS1ΔE9 (APP/PS1) mice starting before the onset of plaque deposition. To determine whether the anti-apoE antibody HJ6.3 affects Aβ plaques, neuronal network function, and behavior in APP/PS1 mice after plaque onset, we administered HJ6.3 (10 mg/kg/week) or PBS intraperitoneally to 7-month-old APP/PS1 mice for 21 weeks. HJ6.3 mildly improved spatial learning performance in the water maze, restored resting-state functional connectivity, and modestly reduced brain Aβ plaque load. There was no effect of HJ6.3 on total plasma cholesterol or cerebral amyloid angiopathy. To investigate the underlying mechanisms of anti-apoE immunotherapy, HJ6.3 was applied to the brain cortical surface and amyloid deposition was followed over 2 weeks using in vivo imaging. Acute exposure to HJ6.3 affected the course of amyloid deposition in that it prevented the formation of new amyloid deposits, limited their growth, and was associated with occasional clearance of plaques, a process likely associated with direct binding to amyloid aggregates. Topical application of HJ6.3 for only 14 d also decreased the density of amyloid plaques assessed postmortem. Collectively, these studies suggest that anti-apoE antibodies have therapeutic potential when given before or after the onset of Aβ pathology.


The Journal of Neuroscience | 2014

An Anti-Neuroinflammatory That Targets Dysregulated Glia Enhances the Efficacy of CNS-Directed Gene Therapy in Murine Infantile Neuronal Ceroid Lipofuscinosis

Shannon L. Macauley; Andrew Wong; Charles Shyng; David P. Augner; Joshua T. Dearborn; Yewande Pearse; Marie S. Roberts; Stephen C. Fowler; Jonathan D. Cooper; D. Martin Watterson; Mark S. Sands

Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative lysosomal storage disease (LSD) caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). Studies in Ppt1−/− mice demonstrate that glial activation is central to the pathogenesis of INCL. Astrocyte activation precedes neuronal loss, while cytokine upregulation associated with microglial reactivity occurs before and concurrent with neurodegeneration. Therefore, we hypothesized that cytokine cascades associated with neuroinflammation are important therapeutic targets for the treatment of INCL. MW01–2-151SRM (MW151) is a blood–brain barrier penetrant, small-molecule anti-neuroinflammatory that attenuates glial cytokine upregulation in models of neuroinflammation such as traumatic brain injury, Alzheimers disease, and kainic acid toxicity. Thus, we used MW151, alone and in combination with CNS-directed, AAV-mediated gene therapy, as a possible treatment for INCL. MW151 alone decreased seizure susceptibility. When combined with AAV-mediated gene therapy, treated INCL mice had increased life spans, improved motor performance, and eradication of seizures. Combination-treated INCL mice also had decreased brain atrophy, astrocytosis, and microglial activation, as well as intermediary effects on cytokine upregulation. These data suggest that MW151 can attenuate seizure susceptibility but is most effective when used in conjunction with a therapy that targets the primary genetic defect.


The Journal of Neuroscience | 2014

Expression of Nampt in Hippocampal and Cortical Excitatory Neurons Is Critical for Cognitive Function

Liana Roberts Stein; David F. Wozniak; Joshua T. Dearborn; Shunsuke Kubota; Rajendra S. Apte; Yukitoshi Izumi; Charles F. Zorumski; Shin-ichiro Imai

Nicotinamide adenine dinucleotide (NAD+) is an enzyme cofactor or cosubstrate in many essential biological pathways. To date, the primary source of neuronal NAD+ has been unclear. NAD+ can be synthesized from several different precursors, among which nicotinamide is the substrate predominantly used in mammals. The rate-limiting step in the NAD+ biosynthetic pathway from nicotinamide is performed by nicotinamide phosphoribosyltransferase (Nampt). Here, we tested the hypothesis that neurons use intracellular Nampt-mediated NAD+ biosynthesis by generating and evaluating mice lacking Nampt in forebrain excitatory neurons (CaMKIIαNampt−/− mice). CaMKIIαNampt−/− mice showed hippocampal and cortical atrophy, astrogliosis, microgliosis, and abnormal CA1 dendritic morphology by 2–3 months of age. Importantly, these histological changes occurred with altered intrahippocampal connectivity and abnormal behavior; including hyperactivity, some defects in motor skills, memory impairment, and reduced anxiety, but in the absence of impaired sensory processes or long-term potentiation of the Schaffer collateral pathway. These results clearly demonstrate that forebrain excitatory neurons mainly use intracellular Nampt-mediated NAD+ biosynthesis to mediate their survival and function. Studying this particular NAD+ biosynthetic pathway in these neurons provides critical insight into their vulnerability to pathophysiological stimuli and the development of therapeutic and preventive interventions for their preservation.


PLOS ONE | 2012

Loss of RBPj in Postnatal Excitatory Neurons Does Not Cause Neurodegeneration or Memory Impairments in Aged Mice

Chihiro Sato; Mustafa Turkoz; Joshua T. Dearborn; David F. Wozniak; Raphael Kopan; Matthew R. Hass

Previous studies suggest that loss of γ-secretase activity in postnatal mouse brains causes age-dependent memory impairment and neurodegeneration. Due to the diverse array of γ-secretase substrates, it remains to be demonstrated whether loss of cleavage of any specific substrate(s) is responsible for these defects. The bulk of the phenotypes observed in mammals deficient for γ-secretase or exposed to γ-secretase inhibitors are caused by the loss of Notch receptor proteolysis. Accordingly, inhibition of Notch signaling is the main cause for untoward effects for γ-secretase inhibitors as therapeutics for Alzheimer’s disease. Therefore, we wished to determine if loss of canonical Notch signaling is responsible for the age-dependent neurodegeneration observed upon γ-secrectase deficiency in the mouse brain. We generated postnatal forebrain-specific RBPj conditional knockout (cKO) mice using the CamKII-Cre driver and examined behavior and brain pathology in 12–18 month old animals. Since all four mammalian Notch receptor homologues signal via this DNA binding protein, these mice lack canonical Notch signaling. We found that loss of RBPj in mature excitatory neurons was well tolerated, with no evidence for neurodegeneration or of learning and memory impairment in mice aged up to 18 months. The only phenotypic deficit we observed in the RBPj-deficient mice was a subtle abnormality in olfactory preferences, particularly in females. We conclude that the loss of canonical Notch signaling through the four receptors is not responsible for age-dependent neurodegeneration or learning and memory deficits seen in γ-secretase deficient mice.


Journal of Clinical Medicine | 2012

Bone Marrow Transplantation Alters the Tremor Phenotype in the Murine Model of Globoid-Cell Leukodystrophy

Adarsh S. Reddy; David F. Wozniak; Nuri B. Farber; Joshua T. Dearborn; Stephen C. Fowler; Mark S. Sands

Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease). In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT), the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease.


PLOS ONE | 2013

Motivational Disturbances and Effects of L-dopa Administration in Neurofibromatosis-1 Model Mice

David F. Wozniak; Kelly A. Diggs-Andrews; Sara Conyers; Carla M. Yuede; Joshua T. Dearborn; Jacquelyn A. Brown; Kazuhiro Tokuda; Yukitoshi Izumi; Charles F. Zorumski; David H. Gutmann

Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1-associated cognitive/behavioral deficits.


Scientific Reports | 2015

Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers

Joshua T. Dearborn; Steven K. Harmon; Stephen C. Fowler; Karen L. O'Malley; George T. Taylor; Mark S. Sands; David F. Wozniak

Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The PPT1-deficient mouse (Cln1−/−) is a useful phenocopy of human INCL. Cln1−/− mice display retinal dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about the cognitive and behavioral functions of Cln1−/− mice during disease progression. In the present study, younger (~1–2 months of age) Cln1−/− mice showed minor deficits in motor/sensorimotor functions while older (~5–6 months of age) Cln1−/− mice exhibited more severe impairments, including decreased locomotor activity, inferior cued water maze performance, decreased running wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such as some learning and memory capabilities seemed intact in older Cln1−/− mice. Younger and older Cln1−/− mice presented with walking initiation defects, gait abnormalities, and slowed movements, which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no evidence of alterations in dopaminergic markers in Cln1−/− mice. Results from this study demonstrate quantifiable changes in behavioral functions during progression of murine INCL and suggest that Parkinson-like motor/sensorimotor deficits in Cln1−/− mice are not mediated by dopamine deficiency.


Molecular Genetics and Metabolism | 2016

Histochemical localization of palmitoyl protein thioesterase-1 activity

Joshua T. Dearborn; Charles Shyng; Jui Yun Lu; Jonah Thornton; Sandra L. Hofmann; Mark S. Sands

Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is an invariably fatal neurodegenerative pediatric disorder caused by an inherited mutation in the PPT1 gene. Patients with INCL lack the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1, EC 3.1.2.22), resulting in intracellular accumulation of autofluorescent storage material and subsequent neuropathology. The Ppt1(-/-) mouse is deficient in PPT1 activity and represents a useful animal model of INCL that recapitulates most of the clinical and pathological aspects of the disease. Preclinical therapeutic experiments performed in the INCL mouse include CNS-directed gene therapy and recombinant enzyme replacement therapy; both seek to re-establish therapeutic levels of the deficient enzyme. We present a novel method for the histochemical localization of PPT1 activity in the Ppt1(-/-) mouse. By utilizing the substrate CUS-9235, tissues known to be positive for PPT1 activity turn varying intensities of blue. Presented here are histochemistry data showing the staining pattern in Ppt1(-/-), wild type, and Ppt1(-/-) mice treated with enzyme replacement therapy or AAV2/9-PPT1-mediated gene therapy. Results are paired with quantitative biochemistry data that confirm the ability of CUS-9235 to detect and localize PPT1 activity. This new method complements the current tools for the study of INCL and evaluation of effective therapies.

Collaboration


Dive into the Joshua T. Dearborn's collaboration.

Top Co-Authors

Avatar

David F. Wozniak

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark S. Sands

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charles Shyng

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Q. Bauer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charles F. Zorumski

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George T. Taylor

University of Missouri–St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Cooper

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Culver

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge