Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua T. Mattila is active.

Publication


Featured researches published by Joshua T. Mattila.


Journal of Immunology | 2013

Microenvironments in Tuberculous Granulomas Are Delineated by Distinct Populations of Macrophage Subsets and Expression of Nitric Oxide Synthase and Arginase Isoforms

Joshua T. Mattila; Olabisi Ojo; Diane Kepka-Lenhart; Simeone Marino; Jin Hee Kim; Seok Yong Eum; Laura E. Via; Clifton E. Barry; Edwin Klein; Denise E. Kirschner; Sidney M. Morris; Philana Ling Lin; JoAnne L. Flynn

Macrophages in granulomas are both antimycobacterial effector and host cell for Mycobacterium tuberculosis, yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial NO synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared with nongranulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, whereas epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68, and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1, and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS/Arg1 expression in epithelioid macrophages as compared with cells in the lymphocyte cuff. iNOS, Arg1, and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas, whereas the inner regions were more likely to contain macrophages with proinflammatory, presumably bactericidal, phenotypes. Together, these data support the concept that granulomas have organized microenvironments that balance antimicrobial anti-inflammatory responses to limit pathology in the lungs.


PLOS ONE | 2010

Reactivation of Latent Tuberculosis in Cynomolgus Macaques Infected with SIV Is Associated with Early Peripheral T Cell Depletion and Not Virus Load

Collin R. Diedrich; Joshua T. Mattila; Edwin Klein; Chris Janssen; Jiayao Phuah; Timothy J. Sturgeon; Ronald C. Montelaro; Philana Ling Lin; JoAnne L. Flynn

HIV-infected individuals with latent Mycobacterium tuberculosis (Mtb) infection are at significantly greater risk of reactivation tuberculosis (TB) than HIV-negative individuals with latent TB, even while CD4 T cell numbers are well preserved. Factors underlying high rates of reactivation are poorly understood and investigative tools are limited. We used cynomolgus macaques with latent TB co-infected with SIVmac251 to develop the first animal model of reactivated TB in HIV-infected humans to better explore these factors. All latent animals developed reactivated TB following SIV infection, with a variable time to reactivation (up to 11 months post-SIV). Reactivation was independent of virus load but correlated with depletion of peripheral T cells during acute SIV infection. Animals experiencing reactivation early after SIV infection (<17 weeks) had fewer CD4 T cells in the periphery and airways than animals reactivating in later phases of SIV infection. Co-infected animals had fewer T cells in involved lungs than SIV-negative animals with active TB despite similar T cell numbers in draining lymph nodes. Granulomas from these animals demonstrated histopathologic characteristics consistent with a chronically active disease process. These results suggest initial T cell depletion may strongly influence outcomes of HIV-Mtb co-infection.


Frontiers in Immunology | 2014

Nitric oxide synthase: non-canonical expression patterns

Joshua T. Mattila; Anita C. Thomas

Science can move ahead by questioning established or canonical views and, so it may be with the enzymes, nitric oxide synthases (NOS). Nitric oxide (NO) is generated by NOS isoforms that are often described by their tissue-specific expression patterns. NOS1 (nNOS) is abundant in neural tissue, NOS2 is upregulated in activated macrophages and known as inducible NOS (iNOS), and NOS3 (eNOS) is abundant in endothelium where it regulates vascular tone. These isoforms are described as constitutive or inducible, but in this perspective we question the broad application of these labels. Are there instances where “constitutive” NOS (NOS1 and NOS3) are inducibly expressed; conversely, are there instances where NOS2 is constitutively expressed? NOS1 and NOS3 inducibility may be linked to post-translational regulation, making their actual patterns activity much more difficult to detect. Constitutive NOS2 expression has been observed in several tissues, especially the human pulmonary epithelium where it may regulate airway tone. These data suggest that expression of the three NOS enzymes may include non-established patterns. Such information should be useful in designing strategies to modulate these important enzymes in different disease states.


The Journal of Infectious Diseases | 2010

CD4+ Regulatory T Cells in a Cynomolgus Macaque Model of Mycobacterium tuberculosis Infection

Angela M. Green; Joshua T. Mattila; Carolyn Bigbee; Kale S. Bongers; P. Ling Lin; JoAnne L. Flynn

BACKGROUND Mycobacterium tuberculosis infection in humans results in either latent infection or active tuberculosis. We sought to determine whether a higher frequency of regulatory T (T(reg)) cells predispose an individual toward active disease or whether T(reg) cells develop in response to active disease. METHODS In cynomolgus macaques infected with a low dose of M. tuberculosis, approximately 50% develop primary tuberculosis, and approximately 50% become latently infected. Forty-one animals were monitored for 6-8 months to assess the correlation of the frequency of Foxp3(+) cells in peripheral blood and airways with the outcome of infection. RESULTS In all animals, the frequency of T(reg) cells (CD4(+)Foxp3(+)) in peripheral blood rapidly decreased and simultaneously increased in the airways. Latently infected monkeys had a significantly higher frequency of T(reg) cells in peripheral blood before infection and during early infection, compared with monkeys that developed active disease. Monkeys with active disease experienced increased frequencies of T(reg) cells among peripheral blood mononuclear cells as they developed disease. CONCLUSIONS Our data suggest that increased frequencies of T(reg) cells in active disease occur in response to increased inflammation rather than act as a causative factor in progression to active disease.


Immunological Reviews | 2015

Immunology studies in non‐human primate models of tuberculosis

JoAnne L. Flynn; Hannah P. Gideon; Joshua T. Mattila; Philana Ling Lin

Non‐human primates, primarily macaques, have been used to study tuberculosis for decades. However, in the last 15 years, this model has been refined substantially to allow careful investigations of the immune response and host‐pathogen interactions in Mycobacterium tuberculosis infection. Low‐dose challenge with fully virulent strains in cynomolgus macaques result in the full clinical spectrum seen in humans, including latent and active infection. Reagents from humans are usually cross‐reactive with macaques, further facilitating the use of this model system to study tuberculosis. Finally, macaques develop the spectrum of granuloma types seen in humans, providing a unique opportunity to investigate bacterial and host factors at the local (lung and lymph node) level. Here, we review the past decade of immunology and pathology studies in macaque models of tuberculosis.


American Journal of Pathology | 2012

Activated B Cells in the Granulomas of Nonhuman Primates Infected with Mycobacterium tuberculosis

Jia Yao Phuah; Joshua T. Mattila; Philana Ling Lin; JoAnne L. Flynn

In an attempt to contain Mycobacterium tuberculosis, host immune cells form a granuloma as a physical and immunological barrier. To date, the contribution of humoral immunity, including antibodies and specific functions of B cells, to M. tuberculosis infection in humans remains largely unknown. Recent studies in mice show that humoral immunity can alter M. tuberculosis infection outcomes. M. tuberculosis infection in cynomolgus macaques recapitulates essentially all aspects of human tuberculosis. As a first step toward understanding the importance of humoral immunity to control of M. tuberculosis infection in primates, we characterized the B-cell and plasma-cell populations in infected animals and found that B cells are present primarily in clusters within the granuloma. The B-cell clusters are in close proximity to peripheral node addressin-positive cells and contain cells positive for Ki-67, a proliferation marker. Granuloma B cells also express CXCR5 and have elevated HLA-DR expression. Tissues containing M. tuberculosis bacilli had higher levels of M. tuberculosis-specific IgG, compared with uninvolved tissue from the same monkeys. Plasma cells detected within the granuloma produced mycobacteria-specific antibodies. Together, these data demonstrate that B cells are present and actively secreting antibodies specific for M. tuberculosis antigens at the site of infection, including lung granulomas and thoracic lymph nodes. These antibodies likely have the capacity to modulate local control of infection in tissues.


Infection and Immunity | 2015

Macrophage Polarization Drives Granuloma Outcome during Mycobacterium tuberculosis Infection

Simeone Marino; Nicholas A. Cilfone; Joshua T. Mattila; Jennifer J. Linderman; JoAnne L. Flynn; Denise E. Kirschner

ABSTRACT Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), induces formation of granulomas, structures in which immune cells and bacteria colocalize. Macrophages are among the most abundant cell types in granulomas and have been shown to serve as both critical bactericidal cells and targets for M. tuberculosis infection and proliferation throughout the course of infection. Very little is known about how these processes are regulated, what controls macrophage microenvironment-specific polarization and plasticity, or why some granulomas control bacteria and others permit bacterial dissemination. We take a computational-biology approach to investigate mechanisms that drive macrophage polarization, function, and bacterial control in granulomas. We define a “macrophage polarization ratio” as a metric to understand how cytokine signaling translates into polarization of single macrophages in a granuloma, which in turn modulates cellular functions, including antimicrobial activity and cytokine production. Ultimately, we extend this macrophage ratio to the tissue scale and define a “granuloma polarization ratio” describing mean polarization measures for entire granulomas. Here we coupled experimental data from nonhuman primate TB granulomas to our computational model, and we predict two novel and testable hypotheses regarding macrophage profiles in TB outcomes. First, the temporal dynamics of granuloma polarization ratios are predictive of granuloma outcome. Second, stable necrotic granulomas with low CFU counts and limited inflammation are characterized by short NF-κB signal activation intervals. These results suggest that the dynamics of NF-κB signaling is a viable therapeutic target to promote M1 polarization early during infection and to improve outcome.


Frontiers in Immunology | 2014

Of mice and men: arginine metabolism in macrophages

Anita C. Thomas; Joshua T. Mattila

Macrophages are involved in inflammation from induction to resolution. Polarization of macrophages along the M1 (classical) or M2 (alternative) axis occurs during inflammation and can be at least partly categorized by the route of arginine metabolism within the macrophage, balancing the activities of the arginase and nitric oxide synthase (NOS) enzyme families (1, 2). Arginase activity is associated with tissue repair responses (via ornithine production and pro-proliferative effects). In contrast, NOS2 generates nitric oxide (NO) species with anti-proliferative effects that is necessary for protection against pathogens and aberrant cells (2, 3). Other NOS enzymes produce NO that acts in the regulation of smooth muscle tone and other cellular processes (4). Macrophages preferentially expressing the arginase or NOS2 pathways enzymes also influence T-cell activation, proliferation, signaling, and apoptosis in different ways (1). While arginase and NOS enzymes can be used to ascertain the pathway of macrophage activation in rodents, there has been debate as to whether they are present in macrophages from humans and other mammals. The arginase and NOS enzymes are extensively conserved, and the NOS forms found in mammals are similar to those in cnidarians, mollusks, and other chordates (5, 6). These arginine-metabolizing enzymes are present in some human leukocytes, and there is evidence that they are also present in macrophages from other vertebrates, including chickens, rabbits, cows, and primates (7–12). However, comparisons of tissue macrophages of different species are lacking, which limits our understanding (13). Many studies in humans have principally focused on blood monocytes, leading some researchers to question the suitability of rodents as model of macrophage activation, as there is not always a direct correlation with human cells. Was Robert Koch correct when he said “Gentlemen, never forget that mice are not humans,” or can the differing results between species be explained, in part, by differences in the types of monocyte or macrophage studied? Our purpose here is to examine this question.


Journal of Immunology | 2011

Simian Immunodeficiency Virus-Induced Changes in T Cell Cytokine Responses in Cynomolgus Macaques with Latent Mycobacterium tuberculosis Infection Are Associated with Timing of Reactivation

Joshua T. Mattila; Collin R. Diedrich; Philana Ling Lin; Jiayao Phuah; JoAnne L. Flynn

Understanding the early immunologic events accompanying reactivated tuberculosis (TB) in HIV-infected individuals may yield insight into causes of reactivation and improve treatment modalities. We used the cynomolgus macaque (Macaca fascicularis) model of HIV–Mycobacterium tuberculosis coinfection to investigate the dynamics of multifunctional T cell responses and granuloma T cell phenotypes in reactivated TB. CD4+ and CD8+ T cells expressing Th1 cytokines (IFN-γ, IL-2, TNF) and Th2 cytokines (IL-4 and IL-10) were followed from latent M. tuberculosis infection to reactivation after coinfection with a pathogenic SIV. Coinfected animals experienced increased Th1 cytokine responses to M. tuberculosis Ags above the latent-response baseline 3–5 wk post-SIV infection that corresponded with peak plasma viremia. Th2 cytokine expression was not Ag specific, but strong, transient IL-4 expression was noted 4–7 wk post-SIV infection. Animals reactivating <17 wk post-SIV infection had significantly more multifunctional CD4+ T cells 3–5 wk post-SIV infection and more Th2-polarized and fewer Th0-, Th1-polarized CD8+ T cells during weeks 1–10 post-SIV infection than animals reactivating >26 wk post-SIV infection. Granuloma T cells included Th0-, Th1-, and Th2-polarized phenotypes but were particularly rich in cytolytic (CD107+) T cells. When combined with the changes in peripheral blood T cells, these factors indicate that events during acute HIV infection are likely to include distortions in proinflammatory and anti-inflammatory T cell responses within the granuloma that have significant effects on reactivation of latent TB. Moreover, it appears that mycobacteria-specific multifunctional T cells are better correlates of Ag load (i.e., disease status) than of protection.


Journal of Immunology | 2014

Computational Modeling Predicts IL-10 Control of Lesion Sterilization by Balancing Early Host Immunity–Mediated Antimicrobial Responses with Caseation during Mycobacterium tuberculosis Infection

Nicholas A. Cilfone; Christopher B. Ford; Simeone Marino; Joshua T. Mattila; Hannah P. Gideon; JoAnne L. Flynn; Denise E. Kirschner; Jennifer J. Linderman

Although almost a third of the world’s population is infected with the bacterial pathogen Mycobacterium tuberculosis, our understanding of the functions of many immune factors involved in fighting infection is limited. Determining the role of the immunosuppressive cytokine IL-10 at the level of the granuloma has proven difficult because of lesional heterogeneity and the limitations of animal models. In this study, we take an in silico approach and, through a series of virtual experiments, we predict several novel roles for IL-10 in tuberculosis granulomas: 1) decreased levels of IL-10 lead to increased numbers of sterile lesions, but at the cost of early increased caseation; 2) small increases in early antimicrobial activity cause this increased lesion sterility; 3) IL-10 produced by activated macrophages is a major mediator of early antimicrobial activity and early host-induced caseation; and 4) increasing levels of infected macrophage derived IL-10 promotes bacterial persistence by limiting the early antimicrobial response and preventing lesion sterilization. Our findings, currently only accessible using an in silico approach, suggest that IL-10 at the individual granuloma scale is a critical regulator of lesion outcome. These predictions suggest IL-10–related mechanisms that could be used as adjunctive therapies during tuberculosis.

Collaboration


Dive into the Joshua T. Mattila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin Klein

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Wissam Beaino

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge