Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua W. Parks is active.

Publication


Featured researches published by Joshua W. Parks.


Nano Letters | 2014

Correlated Electrical and Optical Analysis of Single Nanoparticles and Biomolecules on a Nanopore-Gated Optofluidic Chip

Shuo Liu; Yue Zhao; Joshua W. Parks; David W. Deamer; Aaron R. Hawkins; Holger Schmidt

The analysis of individual biological nanoparticles has significantly advanced our understanding of fundamental biological processes but is also rapidly becoming relevant for molecular diagnostic applications in the emerging field of personalized medicine. Both optical and electrical methods for the detection and analysis of single biomolecules have been developed, but they are generally not used in concert and in suitably integrated form to allow for multimodal analysis with high throughput. Here we report on a dual-mode electrical and optical single-nanoparticle sensing device with capabilities that would not be available with each technique individually. The new method is based on an optofluidic chip with an integrated nanopore that serves as a smart gate to control the delivery of individual nanoparticles to an optical excitation region for ensemble-free optical analysis in rapid succession. We demonstrate electro-optofluidic size discrimination of fluorescent nanobeads, electro-optical detection of single fluorescently labeled influenza viruses, and the identification of single viruses within a mixture of equally sized fluorescent nanoparticles with up to 100% fidelity.


Scientific Reports | 2015

Optofluidic analysis system for amplification-free, direct detection of Ebola infection

Hong Cai; Joshua W. Parks; Tom Wall; Matthew A. Stott; Alexandra Stambaugh; Kendra J. Alfson; Anthony Griffiths; Richard A. Mathies; Ricardo Carrion; Jean L. Patterson; Aaron R. Hawkins; Holger Schmidt

The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Optofluidic wavelength division multiplexing for single-virus detection

Damla Ozcelik; Joshua W. Parks; Tom Wall; Matthew A. Stott; Hong Cai; Aaron R. Hawkins; Holger Schmidt

Significance The ability to simultaneously detect and identify multiple biological particles or biomarkers is one of the key requirements for molecular diagnostic tests that are becoming even more important as personalized and precision medicine place increased emphasis on such capabilities. Integrated optofluidic platforms can help create such highly sensitive, multiplexed assays on a small, dedicated chip. We introduce a method for multiplex fluorescence detection of single bioparticles by creating color-dependent excitation spot patterns from a single integrated waveguide structure. Detection and identification of individual virus particles from three different influenza subtypes are demonstrated. The principle can be readily applied to amplification-free detection of nucleic acid biomarkers as well as larger target numbers using combinatorial color coding. Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.


Biomicrofluidics | 2014

Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications

Joshua W. Parks; Michael A. Olson; Jungkyu Kim; Damla Ozcelik; Hong Cai; Ricardo Carrion; Jean L. Patterson; Richard A. Mathies; Aaron R. Hawkins; Holger Schmidt

We describe the integration of an actively controlled programmable microfluidic sample processor with on-chip optical fluorescence detection to create a single, hybrid sensor system. An array of lifting gate microvalves (automaton) is fabricated with soft lithography, which is reconfigurably joined to a liquid-core, anti-resonant reflecting optical waveguide (ARROW) silicon chip fabricated with conventional microfabrication. In the automaton, various sample handling steps such as mixing, transporting, splitting, isolating, and storing are achieved rapidly and precisely to detect viral nucleic acid targets, while the optofluidic chip provides single particle detection sensitivity using integrated optics. Specifically, an assay for detection of viral nucleic acid targets is implemented. Labeled target nucleic acids are first captured and isolated on magnetic microbeads in the automaton, followed by optical detection of single beads on the ARROW chip. The combination of automated microfluidic sample preparation and highly sensitive optical detection opens possibilities for portable instruments for point-of-use analysis of minute, low concentration biological samples.


IEEE Journal of Selected Topics in Quantum Electronics | 2016

Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation

Damla Ozcelik; Matthew A. Stott; Joshua W. Parks; Jennifer A. Black; Thomas A. Wall; Aaron R. Hawkins; Holger Schmidt

We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio (SNR) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×104 are demonstrated.


Biomicrofluidics | 2016

On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood

Hong Cai; Matthew A. Stott; Damla Ozcelik; Joshua W. Parks; Aaron R. Hawkins; Holger Schmidt

We have developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. We demonstrate blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. We detect and identify multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, we extract two types of melanoma biomarkers, mutated cell-free nucleic acids -BRAFV600E and NRAS, from whole blood. We detect and identify these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate. These results point the way toward a full front-to-back chip-based optofluidic compact system for high-performance analysis of complex biological samples.


Scientific Reports | 2016

Flexible optofluidic waveguide platform with multi-dimensional reconfigurability

Joshua W. Parks; Holger Schmidt

Dynamic reconfiguration of photonic function is one of the hallmarks of optofluidics. A number of approaches have been taken to implement optical tunability in microfluidic devices. However, a device architecture that allows for simultaneous high-performance microfluidic fluid handling as well as dynamic optical tuning has not been demonstrated. Here, we introduce such a platform based on a combination of solid- and liquid-core polydimethylsiloxane (PDMS) waveguides that also provides fully functioning microvalve-based sample handling. A combination of these waveguides forms a liquid-core multimode interference waveguide that allows for multi-modal tuning of waveguide properties through core liquids and pressure/deformation. We also introduce a novel lifting-gate lightvalve that simultaneously acts as a fluidic microvalve and optical waveguide, enabling mechanically reconfigurable light and fluid paths and seamless incorporation of controlled particle analysis. These new functionalities are demonstrated by an optical switch with >45 dB extinction ratio and an actuatable particle trap for analysis of biological micro- and nanoparticles.


IEEE Journal of Selected Topics in Quantum Electronics | 2016

Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO 2 Waveguides

Joshua W. Parks; Thomas A. Wall; Hong Cai; Aaron R. Hawkins; Holger Schmidt

Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO2) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%.


Journal of Biophotonics | 2012

Tailoring the spectral response of liquid waveguide diagnostic platforms

Yue Zhao; Brian S. Phillips; Damla Ozcelik; Joshua W. Parks; Philip Measor; David Gulbransen; Holger Schmidt; Aaron R. Hawkins

Liquid filled waveguides that form the basis for on-chip biophotonics diagnostic platforms have primarily found application in fluorescence and Raman spectroscopy experiments that require sensitive discrimination between weak analyte signals and a variety of background signals. Primary sources of background signal can include light from excitation sources (strong, narrow frequency band) and photoluminescence generated in waveguide cladding layers (weak, wide frequency band). Here we review both solid and liquid core filtering structures which are based on anti-resonant reflection that can be integrated with waveguides for attenuating undesirable optical bands. Important criteria to consider for an optimized biosensor include cladding layer materials that minimize broad-spectrum photoluminescence and optimize layer thicknesses for creating a desired spectral response in both solid and liquid guiding layers, and a microfabrication process capable of producing regions with variable spectral response. New results describing how spurious fluorescence can be minimized by optimized thermal growth conditions and how liquid-core filter discrimination can be tuned with liquid core waveguide length are presented.


Optical Engineering | 2016

Improved environmental stability for plasma enhanced chemical vapor deposition SiO2 waveguides using buried channel designs

Thomas A. Wall; Roger Chu; Joshua W. Parks; Damla Ozcelik; Holger Schmidt; Aaron R. Hawkins

Ridge and buried channel waveguides (BCWs) made using plasma-enhanced chemical vapor deposition SiO2 were fabricated and tested after being subjected to long 85°C water baths. The water bath was used to investigate the effects of any water absorption in the ridge and BCWs. Optical mode spreading and power throughput were measured over a period of three weeks. The ridge waveguides quickly absorbed water within the critical guiding portion of the waveguide. This caused a nonuniformity in the refractive index profile, leading to poor modal confinement after only seven days. The BCWs possessed a low index top cladding layer of SiO2, which caused an increase in the longevity of the waveguides, and after 21 days, the BCW samples still maintained ~20% throughput, much higher than the ridge waveguides, which had a throughput under 5%.

Collaboration


Dive into the Joshua W. Parks's collaboration.

Top Co-Authors

Avatar

Holger Schmidt

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damla Ozcelik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Cai

University of California

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Wall

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Hamilton

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge