Josué Juárez
Universidad de Sonora
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josué Juárez.
Langmuir | 2012
Sonia Goy-López; Josué Juárez; Manuel Alatorre-Meda; Eudald Casals; Victor Puntes; Pablo Taboada; Víctor Mosquera
Gold nanoparticles (Au NPs) from 5 to 100 nm in size synthesized with HAuCl(4) and sodium citrate were complexed with the plasma protein human serum albumin (HSA). Size, surface charge, and surface plasmon bands of the Au NPs are largely modified by the formation of a protein corona via electrostatic interactions and hydrogen bonding as revealed by thermodynamic data. Negative values of the entropy of binding suggested a restriction in the biomolecule mobility upon adsorption. The structure of the adsorbed protein molecules is slightly affected by the interaction with the metal surface, but this effect is enhanced as the NP curvature decreases. Also, it is observed that the protein molecules adsorbed onto the NP surface are more resistant to complete thermal denaturation than free protein ones as deduced from the increases in the melting temperature of the adsorbed protein. Differences in the conformations of the adsorbed protein molecules onto small (<40 nm) and large NPs were observed on the basis of ζ-potential data and FTIR spectroscopy, also suggesting a better resistance of adsorbed protein molecules to thermal denaturing conditions. We think this enhanced protein stability is responsible for a reduced formation of HSA amyloid-like fibrils in the presence of small Au NPs under HSA fibrillation conditions.
Biophysical Journal | 2009
Josué Juárez; Pablo Taboada; Víctor Mosquera
The fibrillation propensity of the multidomain protein human serum albumin (HSA) was analyzed under different solution conditions. The aggregation kinetics, protein conformational changes upon self-assembly, and structure of the different intermediates on the fibrillation pathway were determined by means of thioflavin T (ThT) fluorescence and Congo Red absorbance; far- and near-ultraviolet circular dichroism; tryptophan fluorescence; Fourier transform infrared spectroscopy; x-ray diffraction; and transmission electron, scanning electron, atomic force, and microscopies. HSA fibrillation extends over several days of incubation without the presence of a lag phase, except for HSA samples incubated at acidic pH and room temperature in the absence of electrolyte. The absence of a lag phase occurs if the initial aggregation is a downhill process that does not require a highly organized and unstable nucleus. The fibrillation process is accompanied by a progressive increase in the beta-sheet (up to 26%) and unordered conformation at the expense of alpha-helical conformation, as revealed by ThT fluorescence and circular dichroism and Fourier transform infrared spectroscopies, but changes in the secondary structure contents depend on solution conditions. These changes also involve the presence of different structural intermediates in the aggregation pathway, such as oligomeric clusters (globules), bead-like structures, and ring-shaped aggregates. We suggest that fibril formation may take place through the role of association-competent oligomeric intermediates, resulting in a kinetic pathway via clustering of these oligomeric species to yield protofibrils and then fibrils. The resultant fibrils are elongated but curly, and differ in length depending on solution conditions. Under acidic conditions, circular fibrils are commonly observed if the fibrils are sufficiently flexible and long enough for the ends to find themselves regularly in close proximity to each other. These fibrils can be formed by an antiparallel arrangement of beta-strands forming the beta-sheet structure of the HSA fibrils as the most probable configuration. Very long incubation times lead to a more complex morphological variability of amyloid mature fibrils (i.e., long straight fibrils, flat-ribbon structures, laterally connected fibers, etc.). We also observed that mature straight fibrils can also grow by protein oligomers tending to align within the immediate vicinity of the fibers. This filament + monomers/oligomers scenario is an alternative pathway to the otherwise dominant filament + filament manner of the protein fibrils lateral growth. Conformational preferences for a certain pathway to become active may exist, and the influence of environmental conditions such as pH, temperature, and salt must be considered.
Journal of Physical Chemistry B | 2009
Josué Juárez; Sonia Goy López; Adriana Cambón; Pablo Taboada; Víctor Mosquera
The fibrillation propensity of the multidomain protein human serum albumin (HSA) has been analyzed under physiological and acidic conditions at room and elevated temperatures with varying ionic strengths by different spectroscopic techniques. The kinetics of fibril formation under the different solution conditions and the structures of resulting fibrillar aggregates were also determined. In this way, we have observed that fibril formation is largely affected by electrostatic shielding: at physiological pH, fibrillation is progressively more efficient and faster in the presence of up to 50 mM NaCl; meanwhile, at larger salt concentrations, excessive shielding and further enhancement of the solution hydrophobicity might involve a change in the energy landscape of the aggregation process, which makes the fibrillation process difficult. In contrast, under acidic conditions, a continuous progressive enhancement of HSA fibrillation is observed as the electrolyte concentration in solution increases. Both the distinct ionization and initial structural states of the protein before incubation may be the origin of this behavior. CD, FT-IR, and tryptophan fluorescence spectra seem to confirm this picture by monitoring the structural changes in both protein tertiary and secondary structures along the fibrillation process. On the other hand, the fibrillation of HSA does not show a lag phase except at pH 3.0 in the absence of added salt. Finally, differences in the structure of the intermediates and resulting fibrils under the different conditions are also elucidated by TEM and FT-IR.
Journal of Physical Chemistry B | 2010
Sonia Goy-López; Pablo Taboada; Adriana Cambón; Josué Juárez; Carmen Alvarez-Lorenzo; Angel Concheiro; Víctor Mosquera
In the present work, the formation and stabilization of gold nanoparticles in a one-pot water-based synthesis has been achieved in the presence of a four-arm, star-shaped polyoxyethyelene-polyoxypropylene (PEO-PPO) block copolymer, Tetronic T904, which acts as both reductant and stabilizer. The influence of several parameters such as copolymer and gold salt concentration, reaction temperature, and solution pH on both the size and shape of the resulting nanocrystals has been established. Low copolymer/gold salt molar ratios favor the formation of either triangular or hexagonal planar nanostructures due to a low reduction rate which turns the reaction into kinetic control. As the molar ratio increases, reduction becomes faster with the subsequent increase in the number of crystal seeds and, thus, the decrease in particle size. In addition, there is an increase in the reduction rate which causes the reduction reaction to be governed by thermodynamics, and consequently, spherical geometries are favored. A particle spherical shape can also be promoted as a consequence of the accumulation of block copolymer molecules on different crystallographic planes, homogenizing the metal surface structure and disabling the growth in different crystallographic directions. The same behavior was observed when the reaction temperature was raised. The size and shape of gold nanoparticles could also be controlled by varying the pH of the medium. As the pH becomes more acidic, protons prevent the oxyethylene part of the copolymer from the reduction of metal ions, and consequently, the number of nuclei decreases. This explains the overall increase in the particle size and the change in shape when the synthesis is carried out in acid medium. Finally, comparison with nanoparticles obtained in the presence of a structurally related linear block copolymer Pluronic P105, with a similar number of EO and PO units as T904, denoted an important incidence of the arrangement of PEO and PPO blocks on the reduction reaction rate and the size and shape of the resulting nanoparticles.
Soft Matter | 2012
Josué Juárez; Manuel Alatorre-Meda; Adriana Cambón; Antonio Topete; Silvia Barbosa; Pablo Taboada; Víctor Mosquera
In this work, we have studied the fibrillation process of human serum albumin (HSA) under different solution conditions. In particular, aggregation kinetics, fibril morphology, and composition structural changes were investigated under varying experimental conditions such as pH (2.0 and 7.4), temperature (at 25 and 65 °C), and solvent polarity (ethanol/water mixtures, 10–90% v/v). The characterization was carried out by means of static and dynamic light scattering (SLS and DLS), ThT fluorescence, circular dichroism (CD) and Fourier Transform Infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The aggregation process and the α-helix to β-sheet transitions were found to be favored by temperature and physiological pH. Also, pH was observed to influence both the fibrillation pathway and aggregation kinetics, changing from a classical fibrillation process with a lag phase under acidic conditions to a downhill polymerization process at physiological pH in the presence of the alcohol. Regarding protein structural composition, at room temperature and physiological pH ethanol was found to promote an α-helix to β-sheet conformational transition at intermediate alcohol concentrations, whereas at low and high ethanol contents α-helix prevailed as the predominant structure. Under acidic conditions, ethanol promotes an important fibrillation at high cosolvent concentrations due to screening of electric charges and a decrease in solvent polarity. On the other hand, important differences in the morphology of the resulting fibrils and aggregates are observed depending on the solution conditions. In particular, the formation of classical amyloid-like fibrils at physiological pH and high temperature is observed, in contrast to the usual curly morphology displayed by HSA fibrils under most of the solution conditions. Although the high temperature and pH are the main parameters influencing the protein structure destabilization and subsequent aggregation upon incubation, ethanol helps to regulate the hydrogen bonding, the attractive hydrophobic interactions, and the protein accessible surface area, thus, modifying the packing constraints and the resulting aggregate morphologies.
Chemistry: A European Journal | 2011
Josué Juárez; Adriana Cambón; Antonio Topete; Pablo Taboada; Víctor Mosquera
Magnetic nanowires were obtained through the in situ synthesis of magnetic material by Fe-controlled nanoprecipitation in the presence of two different protein (human serum albumin (HSA) and lysozyme (Lys)) fibrils as biotemplating agents. The structural characteristics of the biotemplates were transferred to the hybrid magnetic wires. They exhibited excellent magnetic properties as a consequence of the 1D assembly and fusion of magnetite nanoparticles as ascertained by SQUID magnetometry. Prompted by these findings, we also checked their potential applicability as MRI contrast agents. The magnetic wires exhibited large r(2)* relaxivities and sufficient contrast resolution even in the presence of an extremely small amount of Fe in the magnetic hybrids, which would potentially enable their use as T(2) contrast imaging agents.
Journal of Materials Chemistry | 2010
Sonia Goy-López; Josué Juárez; Adriana Cambón; Jorge Botana; M. Pereiro; D. Baldomir; Pablo Taboada; Víctor Mosquera
Gold decahedra and triangular plates of small size (30 and 50 nm, respectively) were grown by a green one-step synthesis process of HAuCl4 in the presence of citric acid and amphiphilic copolymer Tetronic T904® (from BASF), which both act as reducing and stabilizing agents. Tetronic T904® is a star-shaped copolymer composed of polyethylene oxide and propylene oxide units. Both compounds are key in the formation of decahedral particles due to their specific adsorption on certain crystallographic planes of the nanoparticles. Withdrawal or substitution of one of them involves the formation of irregular particles. On the other hand, by changing the reactions conditions the nanoparticle size and shape could be modified. In particular, by varying the molar ratio between the block copolymer a more efficient protection provided by the block copolymer is achieved, which allows the reaction to turn into kinetic control and, thus, a change from decahedral to triangular shape is observed. Due to the presence of acute tips and sharp edges, which sustain large electromagnetic fields upon excitation with light of appropriate energy, these nanoparticles demonstrated their utility as SERS substrates. Concentrations of up to ∼10−11 M of the Raman probe 4-nitrobenzenethiol displayed a readable SERS spectrum, with electromagnetic enhancement factors of up to ∼4.2 × 107.
Journal of Colloid and Interface Science | 2011
Adriana Cambón; Manuel Alatorre-Meda; Josué Juárez; Antonio Topete; Dharmista Mistry; David Attwood; Silvia Barbosa; Pablo Taboada; Víctor Mosquera
We have used pyrene fluorescence spectroscopy and isothermal titration calorimetry (ITC) to investigate the effect of hydrophobic-block length on values of the critical micelle concentration (cmc) for aqueous solutions of triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers (B(n)E(m)B(n), where m and n denote the respective block lengths) with hydrophobic block lengths in the range n=12-21. Combined with results from previous work on B(n)E(m)B(n) copolymers with shorter B blocks, plots of log(10)(cmc) (cmc in molar units and reduced to a common E-block length) against total number of B units (n(t)=n for diblock or n(t)=2n for triblock copolymers) display transitions in the slopes of the two plots, which indicate changes in the micellisation equilibrium. These occur at values of n(t)which can be assigned to the onset and completion of collapse of the hydrophobic B blocks, an effect not previously observed for reverse triblock copolymers. The results are compared with related data for diblock E(m)B(n) copolymers.
Journal of Physical Chemistry B | 2008
Emilio Castro; Silvia Barbosa; Josué Juárez; Pablo Taboada; and Issa A. Katime; Víctor Mosquera
Solutions of the polyoxystyrene-polyoxyethylene block copolymer SO(17)EO(65), where SO denotes polystyrene oxide block as the hydrophobic block and EO the polyethylene oxide block as the hydrophilic block, in mixtures of water (a selective solvent for the EO blocks) and 1,4-dioxane (a good solvent for both blocks) were studied by surface tension and light scattering measurements. Surface and micellar structural parameters have been analyzed as a function of solvent composition. The critical micelle concentration increases and the micellar aggregation number decreases, respectively, as the amount of 1,4-dioxane in the binary solvent increases as a consequence of the enhanced solubility of the SO blocks in the solvent mixture, causing the lowering of the interfacial tension between the hydrophobic blocks in the micellar core and the solvent; therefore, to achieve thermodynamic equilibrium, the micelle size decreases. In addition, static light scattering (SLS) has been proved to be a useful technique to detect the lower boundary of the transition between a dilute micellar solution (sol) to a local-ordered micellar solution (soft gel) resulting from a percolation mechanism. Comparison of the sol-soft gel boundaries obtained from SLS for copolymers SO(17)EO(65) and EO(67)SO(15)EO(67) with those previously derived by rheology is made. Finally, changes in the autocorrelation function of the solutions at the boundary obtained from dynamic light scattering are also analyzed.
Langmuir | 2008
Josué Juárez; Pablo Taboada; Miguel A. Valdez; Víctor Mosquera
In the present work, we investigated the micellization, gelation, and structure of the aggregates of three poly(ethylene oxide)-polystyrene oxide block copolymers (E12S10, E10S10E10, and E137S18E137, where E denotes ethylene oxide and S styrene oxide and the subscripts the block length) in solution. Two of them have similar block lengths but different structures (E12S10 and E10S10E10) and the other has longer blocks (E137S18E137). For the first time, the spontaneous formation of vesicles by a poly(oxystyrene)-poly(oxyethylene) block copolymer is reported. These vesicular structures are present when copolymer E12S10 self-assembles in aqueous solution in coexistence with spherical micelles, as confirmed by the size distribution obtained by dynamic light scattering and pictures obtained by polarized optical microscopy, and transmission and cryo-scanning electron microscopies. Vesicle sizes vary between 60 and 500 nm. On the other hand, for copolymers E10S10E10 and E137S18E137, only one species is found in solution, which is assigned to elongated and spherical micelles, respectively. If we compare the high aggregation number derived by static light scattering for the triblock block copolymer micelles, with the maximum theoretical micellar dimensions compatible with a spherical geometry, we can see that the micellar geometry cannot be spherical but must be elongated. This is corroborated by transmission electron microscopy images. On the other hand, tube inversion was used to define the mobile-immobile (soft-hard gel) phase boundaries. To refine the phase diagram and observe the existence of additional phases, rheological measurements of copolymer E137S18E137 were done. The results are in good agreement with previous values published for other polystyrene oxide-poly(ethylene oxide) block copolymers. In contrast, copolymers E12S10 and E10S10E10 did not gel in the concentration range analyzed. Thus, only certain concentrations of copolymer E10S10E10 were analyzed by rheometry, for which an upturn in the low-frequency range of the stress moduli was observed, denoting an evidence of an emerging slow process, which we assign to the first stages of formation of an elastic network.