Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jotham R. Austin is active.

Publication


Featured researches published by Jotham R. Austin.


The Plant Cell | 2006

Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes.

Jotham R. Austin; Elizabeth Frost; Pierre-Alexandre Vidi; Felix Kessler; L. Andrew Staehelin

Plastoglobules are lipoprotein particles inside chloroplasts. Their numbers have been shown to increase during the upregulation of plastid lipid metabolism in response to oxidative stress and during senescence. In this study, we used state-of-the-art high-pressure freezing/freeze-substitution methods combined with electron tomography as well as freeze-etch electron microscopy to characterize the structure and spatial relationship of plastoglobules to thylakoid membranes in developing, mature, and senescing chloroplasts. We demonstrate that plastoglobules are attached to thylakoids through a half-lipid bilayer that surrounds the globule contents and is continuous with the stroma-side leaflet of the thylakoid membrane. During oxidative stress and senescence, plastoglobules form linkage groups that are attached to each other and remain continuous with the thylakoid membrane by extensions of the half-lipid bilayer. Using three-dimensional tomography combined with immunolabeling techniques, we show that the plastoglobules contain the enzyme tocopherol cyclase (VTE1) and that this enzyme extends across the surface monolayer into the interior of the plastoglobules. These findings demonstrate that plastoglobules function as both lipid biosynthesis and storage subcompartments of thylakoid membranes. The permanent structural coupling between plastoglobules and thylakoid membranes suggests that the lipid molecules contained in the plastoglobule cores (carotenoids, plastoquinone, and tocopherol [vitamin E]) are in a dynamic equilibrium with those located in the thylakoid membranes.


Journal of Cell Biology | 2010

Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo

Amanda M. Marchiando; Le Shen; W. Vallen Graham; Christopher R. Weber; Brad T. Schwarz; Jotham R. Austin; David R. Raleigh; Yanfang Guan; Alastair J.M. Watson; Marshall H. Montrose; Jerrold R. Turner

Although tight junction morphology is not obviously affected by TNF, this proinflammatory cytokine promotes internalization of occludin, resulting in disrupted barrier function within the intestine.


The Plant Cell | 2004

Electron Tomographic Analysis of Somatic Cell Plate Formation in Meristematic Cells of Arabidopsis Preserved by High-Pressure Freezing

José M. Seguí-Simarro; Jotham R. Austin; Erin White; L. Andrew Staehelin

We have investigated the process of somatic-type cytokinesis in Arabidopsis (Arabidopsis thaliana) meristem cells with a three-dimensional resolution of ∼7 nm by electron tomography of high-pressure frozen/freeze-substituted samples. Our data demonstrate that this process can be divided into four phases: phragmoplast initials, solid phragmoplast, transitional phragmoplast, and ring-shaped phragmoplast. Phragmoplast initials arise from clusters of polar microtubules (MTs) during late anaphase. At their equatorial planes, cell plate assembly sites are formed, consisting of a filamentous ribosome-excluding cell plate assembly matrix (CPAM) and Golgi-derived vesicles. The CPAM, which is found only around growing cell plate regions, is suggested to be responsible for regulating cell plate growth. Virtually all phragmoplast MTs terminate inside the CPAM. This association directs vesicles to the CPAM and thereby to the growing cell plate. Cell plate formation within the CPAM appears to be initiated by the tethering of vesicles by exocyst-like complexes. After vesicle fusion, hourglass-shaped vesicle intermediates are stretched to dumbbells by a mechanism that appears to involve the expansion of dynamin-like springs. This stretching process reduces vesicle volume by ∼50%. At the same time, the lateral expansion of the phragmoplast initials and their CPAMs gives rise to the solid phragmoplast. Later arriving vesicles begin to fuse to the bulbous ends of the dumbbells, giving rise to the tubulo-vesicular membrane network (TVN). During the transitional phragmoplast stage, the CPAM and MTs disassemble and then reform in a peripheral ring phragmoplast configuration. This creates the centrifugally expanding peripheral cell plate growth zone, which leads to cell plate fusion with the cell wall. Simultaneously, the central TVN begins to mature into a tubular network, and ultimately into a planar fenestrated sheet (PFS), through the removal of membrane via clathrin-coated vesicles and by callose synthesis. Small secondary CPAMs with attached MTs arise de novo over remaining large fenestrae to focus local growth to these regions. When all of the fenestrae are closed, the new cell wall is complete. Few endoplasmic reticulum (ER) membranes are seen associated with the phragmoplast initials and with the TVN cell plate that is formed within the solid phragmoplast. ER progressively accumulates thereafter, reaching a maximum during the late PFS stage, when most cell plate growth is completed.


Journal of Biological Chemistry | 2006

Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles.

Pierre-Alexandre Vidi; Marion Kanwischer; Sacha Baginsky; Jotham R. Austin; Gabor Csucs; Peter Dörmann; Felix Kessler; Claire Bréhélin

Chloroplasts contain lipoprotein particles termed plastoglobules. Plastoglobules are generally believed to have little function beyond lipid storage. Here we report on the identification of plastoglobule proteins using mass spectrometry methods in Arabidopsis thaliana. We demonstrate specific plastoglobule association of members of the plastid lipid-associated proteins/fibrillin family as well as known metabolic enzymes, including the tocopherol cyclase (VTE1), a key enzyme of tocopherol (vitamin E) synthesis. Moreover, comparative analysis of chloroplast membrane fractions shows that plastoglobules are a site of vitamin E accumulation in chloroplasts. Thus, in addition to their lipid storage function, we propose that plastoglobules are metabolically active, taking part in tocopherol synthesis and likely other pathways.


The Plant Cell | 2010

Arrangement of Photosystem II and ATP Synthase in Chloroplast Membranes of Spinach and Pea

Bertram Daum; Daniela Nicastro; Jotham R. Austin; J. Richard McIntosh; Werner Kühlbrandt

This work uses electron cryotomography to study the three-dimensional supramolecular organization of photosystem II and ATP synthase within the thylakoid membrane. It finds photosystem II as dimers in grana stacks, whereas ATP synthases are monomers located on minimally curved stromal thylakoids or grana end membranes but are absent from the highly curved grana margins, in clear contrast to the situation in mitochondria. We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.


Plant Physiology | 2011

Three-Dimensional Architecture of Grana and Stroma Thylakoids of Higher Plants as Determined by Electron Tomography

Jotham R. Austin; L. Andrew Staehelin

We have investigated the three-dimensional (3D) architecture of the thylakoid membranes of Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and spinach (Spinacia oleracea) with a resolution of approximately 7 nm by electron tomography of high-pressure-frozen/freeze-substituted intact chloroplasts. Higher-plant thylakoids are differentiated into two interconnected and functionally distinct domains, the photosystem II/light-harvesting complex II-enriched stacked grana thylakoids and the photosystem I/ATP synthase-enriched, nonstacked stroma thylakoids. The grana thylakoids are organized in the form of cylindrical stacks and are connected to the stroma thylakoids via tubular junctions. Our data confirm that the stroma thylakoids are wound around the grana stacks in the form of multiple, right-handed helices at an angle of 20° to 25° as postulated by a helical thylakoid model. The junctional connections between the grana and stroma thylakoids all have a slit-like architecture, but their size varies tremendously from approximately 15 × 30 nm to approximately 15 × 435 nm, which is approximately 5 times larger than seen in chemically fixed thylakoids. The variable slit length results in less periodicity in grana/stroma thylakoid organization than proposed in the original helical model. The stroma thylakoids also exhibit considerable architectural variability, which is dependent, in part, on the number and the orientation of adjacent grana stacks to which they are connected. Whereas some stroma thylakoids form solid, sheet-like bridges between adjacent grana, others exhibit a branching geometry with small, more tubular sheet domains also connecting adjacent, parallel stroma thylakoids. We postulate that the tremendous variability in size of the junctional slits may reflect a novel, active role of junctional slits in the regulation of photosynthetic function. In particular, by controlling the size of junctional slits, plants could regulate the flow of ions and membrane molecules between grana and stroma thylakoid membrane domains.


Journal of Cell Science | 2005

Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis

Jotham R. Austin; José M. Seguí-Simarro; L. Andrew Staehelin

The cell plate of higher plants is formed within a ribosome-excluding cell plate assembly matrix. Phragmoplast microtubules facilitate cell-plate formation by forming a scaffold that directs Golgi-derived vesicles to the forming cell plate. Here, we analyse the effects of the cell-plate assembly matrix on phragmoplast microtubule plus-end geometry by electron tomography of cryogenically fixed Arabidopsis meristem cells. Five distinct microtubules plus-end geometries are seen - blunt, extended, horned, flared and hybrid extended/horned. We have quantified and mapped these types of plus-end morphology during the different stages of cell-plate formation and analysed the effects of cell-plate assembly matrix association on microtubule plus-end morphologies. Our results show that somatic-type phragmoplast microtubules do not interdigitate at the cell plate mid-line. The cell-plate assembly matrix is shown to stabilize microtubule plus ends, as evidenced by the fact that of these microtubules that do not terminate in such a matrix, 40-80% are horn-shaped (shrinking), whereas of those that end in such a matrix, 50-70% are blunt (metastable). Also, a third of the blunt-ended microtubules within the cell-plate assembly matrix end at a distance of ∼30 nm from the cell plate.


Traffic | 2010

The Yeast GRASP Grh1 Colocalizes with COPII and Is Dispensable for Organizing the Secretory Pathway

Stephanie K. Levi; Dibyendu Bhattacharyya; Rita Strack; Jotham R. Austin; Benjamin S. Glick

In mammalian cells, the ‘Golgi reassembly and stacking protein’ (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non‐essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER–Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER–Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.


Plant Physiology | 2011

Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

Michelle Liberton; Jotham R. Austin; R. Howard Berg; Himadri B. Pakrasi

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.


eLife | 2015

COPI selectively drives maturation of the early Golgi

Effrosyni Papanikou; Kasey J. Day; Jotham R. Austin; Benjamin S. Glick

COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI: http://dx.doi.org/10.7554/eLife.13232.001

Collaboration


Dive into the Jotham R. Austin's collaboration.

Top Co-Authors

Avatar

L. Andrew Staehelin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Himadri B. Pakrasi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José M. Seguí-Simarro

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

La Staehelin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Marisa S. Otegui

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R. Howard Berg

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge