Jothikumar Narayanan
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jothikumar Narayanan.
Applied and Environmental Microbiology | 2005
Vincent R. Hill; Amy L. Polaczyk; Donghyun Hahn; Jothikumar Narayanan; Theresa L. Cromeans; Jacquelin M. Roberts; James E. Amburgey
ABSTRACT The ability to simultaneously concentrate diverse microbes is an important consideration for sample collection methods that are used for emergency response and environmental monitoring when drinking water may be contaminated with an array of unknown microbes. This study focused on developing a concentration method using ultrafilters and different combinations of a chemical dispersant (sodium polyphosphate [NaPP]) and surfactants. Tap water samples were seeded with bacteriophage MS2, Escherichia coli, Enterococcus faecalis, Cryptosporidium parvum, 4.5-μm microspheres, Salmonella enterica serovar Typhimurium, Bacillus globigii endospores, and echovirus 1. Ten-liter tap water samples were concentrated to ∼250 ml in 12 to 42 min, depending on the experimental condition. Initial experiments indicated that pretreating filters with fetal bovine serum or NaPP resulted in an increase in microbe recovery. The addition of NaPP to the tap water samples resulted in significantly higher microbe and microsphere recovery efficiencies. Backflushing of the ultrafilter was found to significantly improve recovery efficiencies. The effectiveness of backflushing was improved further with the addition of Tween 80 to the backflush solution. The ultrafiltration method developed in this study, incorporating the use of NaPP pretreatment and surfactant solution backflushing, was found to recover MS2, C. parvum, microspheres, and several bacterial species with mean recovery efficiencies of 70 to 93%. The mean recovery efficiency for echovirus 1 (49%) was the lowest of the microbes studied for this method. This research demonstrates that ultrafiltration can be effective for recovering diverse microbes simultaneously in tap water and that chemical dispersants and surfactants can be beneficial for improving microbial recovery using this technique.
PLOS ONE | 2010
Naomi W. Lucchi; Allison Demas; Jothikumar Narayanan; Deborah Sumari; Abdunoor M. Kabanywanyi; S. Patrick Kachur; John W. Barnwell; Venkatachalam Udhayakumar
Background Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. Methodology and Significant Findings Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. Conclusion This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs.
Clinical Infectious Diseases | 2012
Jonathan S. Yoder; Susanne Straif-Bourgeois; Sharon L. Roy; Thomas A. Moore; Govinda S. Visvesvara; Raoult Ratard; Vincent R. Hill; Jon D. Wilson; Andrea J. Linscott; Ron Crager; Natalia A. Kozak; Rama Sriram; Jothikumar Narayanan; Bonnie Mull; Amy M. Kahler; Chandra Schneeberger; Alexandre J. da Silva; Mahendra Poudel; Katherine Baumgarten; Lihua Xiao; Michael J. Beach
BACKGROUND Naegleria fowleri is a climate-sensitive, thermophilic ameba found in the environment, including warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri-containing water enters the nose, typically during swimming, and N. fowleri migrates to the brain via the olfactory nerve. In 2011, 2 adults died in Louisiana hospitals of infectious meningoencephalitis after brief illnesses. METHODS Clinical and environmental testing and case investigations were initiated to determine the cause of death and to identify the exposures. RESULTS Both patients had diagnoses of PAM. Their only reported water exposures were tap water used for household activities, including regular sinus irrigation with neti pots. Water samples, tap swab samples, and neti pots were collected from both households and tested; N. fowleri were identified in water samples from both homes. CONCLUSIONS These are the first reported PAM cases in the United States associated with the presence of N. fowleri in household plumbing served by treated municipal water supplies and the first reports of PAM potentially associated with the use of a nasal irrigation device. These cases occurred in the context of an expanding geographic range for PAM beyond southern tier states with recent case reports from Minnesota, Kansas, and Virginia. These infections introduce an additional consideration for physicians recommending nasal irrigation and demonstrate the importance of using appropriate water (distilled, boiled, filtered) for nasal irrigation. Furthermore, the changing epidemiology of PAM highlights the importance of raising awareness about this disease among physicians treating persons showing meningitislike symptoms.
PLOS ONE | 2013
Jaymin C. Patel; Jenna Oberstaller; Maniphet Xayavong; Jothikumar Narayanan; Jeremy D. DeBarry; Ganesh Srinivasamoorthy; Leopoldo Villegas; Ananias A. Escalante; Alexandre J. DaSilva; David S. Peterson; John W. Barnwell; Jessica C. Kissinger; Venkatachalam Udhayakumar; Naomi W. Lucchi
Plasmodium vivax infections remain a major source of malaria-related morbidity and mortality. Early and accurate diagnosis is an integral component of effective malaria control programs. Conventional molecular diagnostic methods provide accurate results but are often resource-intensive, expensive, have a long turnaround time and are beyond the capacity of most malaria-endemic countries. Our laboratory has recently developed a new platform called RealAmp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of malaria parasites. Here we describe new primers for the detection of P. vivax using the RealAmp method. Three pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the P. vivax genome. The amplification was carried out at 64°C using SYBR Green or SYTO-9 intercalating dyes for 90 minutes with the tube scanner set to collect fluorescence signals at 1-minute intervals. Clinical samples of P. vivax and other human-infecting malaria parasite species were used to determine the sensitivity and specificity of the primers by comparing with an 18S ribosomal RNA-based nested PCR as the gold standard. The new set of primers consistently detected laboratory-maintained isolates of P. vivax from different parts of the world. The primers detected P. vivax in the clinical samples with 94.59% sensitivity (95% CI: 87.48–98.26%) and 100% specificity (95% CI: 90.40–100%) compared to the gold standard nested-PCR method. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting P. vivax.
Clinical Infectious Diseases | 2015
Jennifer R. Cope; Raoult Ratard; Vincent R. Hill; Theresa Sokol; Jonathan Jake Causey; Jonathan S. Yoder; Gayatri Mirani; Bonnie Mull; Kimberly Mukerjee; Jothikumar Narayanan; Meggie E. Doucet; Yvonne Qvarnstrom; Charla N. Poole; Olugbenga Akingbola; Jana M. Ritter; Zhenggang Xiong; Alexandre J. da Silva; Dawn M. Roellig; Russell B. Van Dyke; Harlan Stern; Lihua Xiao; Michael J. Beach
BACKGROUND Naegleria fowleri is a climate-sensitive, thermophilic ameba found in warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri-containing water enters the nose, typically during swimming, and migrates to the brain via the olfactory nerve. In August 2013, a 4-year-old boy died of meningoencephalitis of unknown etiology in a Louisiana hospital. METHODS Clinical and environmental testing and a case investigation were initiated to determine the cause of death and to identify potential exposures. RESULTS Based on testing of cerebrospinal fluid and brain specimens, the child was diagnosed with PAM. His only reported water exposure was tap water; in particular, tap water that was used to supply water to a lawn water slide on which the child had played extensively prior to becoming ill. Water samples were collected from both the home and the water distribution system that supplied the home and tested; N. fowleri was identified in water samples from both the home and the water distribution system. CONCLUSIONS This case is the first reported PAM death associated with culturable N. fowleri in tap water from a US treated drinking water system. This case occurred in the context of an expanding geographic range for PAM beyond southern states, with recent case reports from Minnesota, Kansas, and Indiana. This case also highlights the role of adequate disinfection throughout drinking water distribution systems and the importance of maintaining vigilance when operating drinking water systems using source waters with elevated temperatures.
PLOS ONE | 2013
Naomi W. Lucchi; Jothikumar Narayanan; Mara A. Karell; Maniphet Xayavong; Simon Kariuki; Alexandre J. DaSilva; Vincent R. Hill; Venkatachalam Udhayakumar
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.
Journal of Parasitology Research | 2013
Bonnie Mull; Jothikumar Narayanan; Vincent R. Hill
Primary amebic meningoencephalitis (PAM) is a rare and typically fatal infection caused by the thermophilic free-living ameba, Naegleria fowleri. In 2010, the first confirmed case of PAM acquired in Minnesota highlighted the need for improved detection and quantification methods in order to study the changing ecology of N. fowleri and to evaluate potential risk factors for increased exposure. An immunomagnetic separation (IMS) procedure and real-time PCR TaqMan assay were developed to recover and quantify N. fowleri in water and sediment samples. When one liter of lake water was seeded with N. fowleri strain CDC:V212, the method had an average recovery of 46% and detection limit of 14 amebas per liter of water. The method was then applied to sediment and water samples with unknown N. fowleri concentrations, resulting in positive direct detections by real-time PCR in 3 out of 16 samples and confirmation of N. fowleri culture in 6 of 16 samples. This study has resulted in a new method for detection and quantification of N. fowleri in water and sediment that should be a useful tool to facilitate studies of the physical, chemical, and biological factors associated with the presence and dynamics of N. fowleri in environmental systems.
Journal of Microbiological Methods | 2014
Prithiviraj Jothikumar; Jothikumar Narayanan; Vincent R. Hill
Rapid and specific detection methods for bacterial agents in drinking water are important for disease prevention and responding to suspected contamination events. In this study, an isothermal Genome Exponential Amplification Reaction (GEAR) assay for Escherichia coli O157:H7 was designed specifically to recognize a 199-bp fragment of the lipopolysaccharide gene (rfbE) for rapid testing of water samples. The GEAR assay was found to be specific for E. coli O157:H7 using 10 isolates of E. coli O157:H7 and a panel of 86 bacterial controls. The GEAR assay was performed at a constant temperature of 65°C using SYTO 9 intercalating dye. Detection limits were determined to be 20 CFU for the GEAR assay. When SYTO 9 fluorescence was measured using a real-time PCR instrument, the assay had the same detection limit as when malachite green was added to the reaction mix and a characteristic blue color was visually observed in positive reactions. The study also found that 50 and 20 CFU of E. coli O157:H7 seeded into 100-liter of tap water could be detected by the GEAR assays after the sample was concentrated by hollow-fiber ultrafiltration (HFUF) and approximately 10% of HFUF concentrate was cultured using trypticase soy broth-novobiocin. When applied to 19 surface water samples collected from Tennessee and Kentucky, the GEAR assay and a published real-time PCR assay both detected E. coli O157:H7 in two of the samples. The results of this study indicate that the GEAR assay can be sensitive for rapid detection of E. coli O157:H7 in water samples using fluorometric instruments and visual endpoint determination.
Water | 2015
Amy M. Kahler; Trisha B. Johnson; Donghyun Hahn; Jothikumar Narayanan; Gordana Derado; Vincent R. Hill
In this study, hollow-fiber ultrafiltration (UF) was assessed for recovery of Escherichia coli, Clostridium perfringens spores, Cryptosporidium parvum oocysts, echovirus 1, and bacteriophages MS2 and ΦX174 from ground and surface waters. Microbes were seeded into twenty-two 50-L water samples that were collected from the Southeastern United States and concentrated to ∼500 mL by UF. Secondary concentration was performed for C. parvum by centrifugation followed by immunomagnetic separation. Secondary concentration for viruses was performed using centrifugal ultrafilters or polyethylene glycol precipitation. Nine water quality parameters were measured in each water sample to determine whether water quality data correlated with UF and secondary concentration recovery efficiencies. Average UF recovery efficiencies were 66%–95% for the six enteric microbes. Average recovery efficiencies for the secondary concentration methods were 35%–95% for C. parvum and the viruses. Overall, measured water quality parameters were not significantly associated with UF recovery efficiencies. However, recovery of ΦX174 was negatively correlated with turbidity. The recovery data demonstrate that UF can be an effective method for concentrating diverse microbes from ground and surface waters. This study highlights the utility of tangential-flow hollow fiber ultrafiltration for recovery of bacteria, viruses, and parasites from large volume environmental water samples.
Pathogenetics | 2015
Vincent R. Hill; Jothikumar Narayanan; Rachel R. Gallen; Karen L. Ferdinand; Theresa L. Cromeans; Jan Vinjé
Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters.