Jouni Laakso
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jouni Laakso.
Oikos | 1999
Jouni Laakso; Heikki Setälä
The proposed mechanisms for the species diversity-function relationship in plant communities stress the recognition of functional properties of species, and interactions between plants and soil processes. As resource availability to plants is influenced by the architecture of decomposer food webs, it has been hypothesised that the diversity of decomposers can also control ecosystem processes, including primary production. We manipulated the complexity of soil animal communities in a miniecosysten experiment in which a boreal forest floor with birch seedlings infected with mycorrhizal fungi was created. The soil animal diversity ranged from zero to typical species richness of soil fauna (approximately 50 taxa) in coniferous forests. Between these extremes was a nested factorial design with manually assembled communities consisting of two sets of one-species, and two sets of five-species animal communities within fungivorous and microbi-detritivorous trophic groups. To investigate the role of predators in system functioning, the miniecosystems with fungivorous and microbidetritivorous fauna were established either with or without mesostigmatid mites as top predators. The miniecosystems were incubated in a climate chamber with varying illumination and temperature regimes for 40 weeks. Our experiment provides evidence that primary productivity is generally insensitive to variation at the species level or even at the level of trophic groups. Although top predators generally reduced prey population size, no effect was found on systen functioning. However, the removal of microbe- or detritus-feeding fauna, especially the microbi-detritivore Cognettia sphagnetorum reduced plant N uptake and accumulation of plant biomass. The functional importance of soil fauna was inversely related to the trophic position of the group. Our results suggest that ecosystem functioning is robust against species extinctions in belowground food webs, and that primary production is predominantly controlled by organisms at low trophic positions in the decomposer food web.
Oikos | 1998
Jouni Laakso; Heikki Setälä
Community composition and food web structure of soil decomposer biota in relation to various habitat properties were compared between upper parts of red wood ant (Formica aquilonia) nest mounds and the adjacent forest soil. For a description of trophic structure of the decomposer community in the two habitats, soil decomposers were classified into 14 trophic groups. Classification of the taxa into three habitat preference categories resulted in a clear division of the fauna into either soil or nest specialists, relatively few taxa falling between these two groups. A large majority of the nest specialists belonged to a non-myrmecophilous soil decomposer fauna so far largely overlooked in studies on ant-invertebrate associations. Trophic organisation of the nest mound community differed clearly from that in the soil by having considerably larger biomass at the base of the food web, and less large predators -other than ants - at the top of the web. Contrary to forest soils. the clear dominance of bacterial feeding microfauna over the fungal feeding microfauna in the nest mounds suggests that most of the energy passing through the food web is channelled through a bacterial-based food-web compartment in the nest mounds. Relatively constant temperature and moisture in the nest surface, continuous energy input by the ants to the nests, and ant-induced reduction in predation pressure on macropredators are suggested to be responsible for the development of the typical decomposer community structure in the nest mounds. Thus, the food-web dynamics in ant nest mounds represent an interesting case in which the behaviour of an invertebrate species (i.e. the ant) has a potential to control the development of a system-level organisation. The high biomass of microbi-detritivorous animals, especially earthworms, in the nest mounds suggests that the activities of the decomposer fauna may feed back to the structure of nest mound and indirectly alter the performance of the ant colony.
Oecologia | 1997
Jouni Laakso; Heikki Setälä
Abstract A previously undocumented association between earthworms and red wood ants (Formicaaquilonia Yarr.) was found during an investigation of the influence of wood ants on the distribution and abundance of soil animals in boreal forest soil. Ant nest mounds and the surrounding soil of the ant territories were sampled. The ant nest mound surface (the uppermost 5-cm layer) harboured a much more abundant earthworm community than the surrounding soil; the biomass of the earthworms was about 7 times higher in the nests than in the soil. Dendrodrilusrubidus dominated the earthworm community in the nests, while in soils Dendrobaenaoctaedra was more abundant. Favorable temperature, moisture and pH (Ca content), together with abundant food supply (microbes and decomposing litter) are likely to make a nest mound a preferred habitat for earthworms, provided that they are not preyed upon by the ants. We also conducted laboratory experiments to study antipredation mechanisms of earthworms against ants. The experiments showed that earthworms do not escape predation by avoiding contact with ants in their nests. The earthworm mucus repelled the ants, suggesting a chemical defence against predation. Earthworms probably prevent the nest mounds from becoming overgrown by moulds and fungi, indicating possible mutualistic relationships between the earthworms and the ants.
Oecologia | 1999
Jouni Laakso; Heikki Setälä
Abstract We studied the role of nematode predation in the functioning of detrital food webs assembled in microcosms. The microcosms contained defaunated humus and litter materials, a diverse microbial community with bacteria, fungi and protozoa, and a birch (Betula pendula) seedling infected with mycorrhizal fungi. Different levels of top-down control upon microbivorous nematodes were set up by assembling food webs either without predators, or in combinations with a specialist and a non-specialist predatory mite (Mesostigmata). The nematode community was composed of either (1) three species of bacterivorous, or (2) three species of fungivorous nematodes or (3) both groups together. After two growing periods for the birch (38 weeks), the microcosms were destructively sampled for animal and microbial biomasses, concentration of mineral N in the soil, plant biomass and plant N concentration. The specialist predator reduced biomasses of both bacterial- and fungal-feeding nematodes by more than 50%, whereas the non-specialist predator weakly increased the biomass of fungivorous nematodes. Thus, under high predation pressure, the biomass of microbivores changed as predicted by trophic dynamic models assuming strong top-down control and uniformly behaving trophic levels. Despite this, microbial biomass was unaffected by the predators. However, microbial respiration increased slightly in the presence of predators. Assuming that microbial respiration correlates with microbial productivity, the increase in microbial respiration indicates a cascading productivity regulation. The composition of the microbivore community had only a minor effect on the outcome of the top-down control on microbes. The >50% reduction in nematode biomass and respiration coincided with <16% increase in microbial respiration and did not affect microbial biomass. Presence of the specialist predator slightly reduced soil NH+4 concentration in communities with fungivore nematodes but plant growth and N uptake remained unchanged. Thus, the structure of the community only weakly controlled nutrient mineralisation.
PLOS ONE | 2012
Elina Laanto; Jaana K. H. Bamford; Jouni Laakso; Lotta-Riina Sundberg
Parasites provide a selective pressure during the evolution of their hosts, and mediate a range of effects on ecological communities. Due to their short generation time, host-parasite interactions may also drive the virulence of opportunistic bacteria. This is especially relevant in systems where high densities of hosts and parasites on different trophic levels (e.g. vertebrate hosts, their bacterial pathogens, and virus parasitizing bacteria) co-exist. In farmed salmonid fingerlings, Flavobacterium columnare is an emerging pathogen, and phage that infect F. columnare have been isolated. However, the impact of these phage on their host bacterium is not well understood. To study this, four strains of F. columnare were exposed to three isolates of lytic phage and the development of phage resistance and changes in colony morphology were monitored. Using zebrafish (Danio rerio) as a model system, the ancestral rhizoid morphotypes were associated with a 25–100% mortality rate, whereas phage-resistant rough morphotypes that lost their virulence and gliding motility (which are key characteristics of the ancestral types), did not affect zebrafish survival. Both morphotypes maintained their colony morphologies over ten serial passages in liquid culture, except for the low-virulence strain, Os06, which changed morphology with each passage. To our knowledge, this is the first report of the effects of phage-host interactions in a commercially important fish pathogen where phage resistance directly correlates with a decline in bacterial virulence. These results suggest that phage can cause phenotypic changes in F. columnare outside the fish host, and antagonistic interactions between bacterial pathogens and their parasitic phage can favor low bacterial virulence under natural conditions. Furthermore, these results suggest that phage-based therapies can provide a disease management strategy for columnaris disease in aquaculture.
Plant and Soil | 2000
Jouni Laakso; Heikki Setälä; Ansa Palojärvi
We studied the sensitivity of soil microbial communities and ecosystem processes to variation in the vertical and horizontal structure of decomposer food web under nitrogen poor and N-enriched conditions. Microcosms with humus and litter layer of boreal forest floor, birch seedlings infected with mycorrhizal fungi, and decomposer food webs with differing trophic group and species composition of soil fauna were constructed. During the second growing period for the birch, we irrigated half of the microcosms with urea solution, and the other half with de-ionised water to create two levels of N concentration in the substrate. During the experiment night time respirations of the microcosms were measured, and the water leached through the microcosms was analysed for concentration of mineral N, and nematode numbers. The microcosms were destructively sampled after 37 weeks for plant biomass and N uptake, structure of soil animal and microbial community (indicated by PLFA profiles), and physical and chemical properties of the humus and litter materials. Predatory mites and nematodes had a negative influence on the biomass of their microbivorous and microbi-detritivorous prey, and microbi-detritivores affected the biomass and community structure of microbes (indicated by PLFA-analysis). Moreover, predatory mites and nematodes increased microbial biomass and changed the microbial community structure. The decomposer food web structure affected also N uptake and growth of plants. Microbi-detritivorous fauna had a positive effect, whereas predators of microbial and detritus feeding fauna exerted a negative influence on plant N uptake and biomass production. The impact of a trophic group on the microbes and plant was also strongly dependent on species composition within the group. Nitrogen addition magnified the influence of food web structure on microbial biomass and plant N uptake. We suggest that addition of urea-N to the soil modified the animal-microbe interaction by increasing microbial growth and altering community structure of microbes. The presence of microbi-detritivores and predators reduced loss of carbon from the microcosms, and the food web structure influenced also water holding capacity of the materials. The changes in plant growth, nutrient cycling, size of N and C pools, and in the physical properties of the soil emphasize the importance and diversity of indirect consequences of decomposer food web structure.
PLOS ONE | 2009
Ville-Petri Friman; Carita Lindstedt; Teppo Hiltunen; Jouni Laakso; Johanna Mappes
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.
Royal Society of London. Proceedings B. Biological Sciences; 267(1455), pp 1851-1856 (2000) | 2000
Esa Ranta; Per Lundberg; Veijo Kaitala; Jouni Laakso
Characterizing population fluctuations and their causes is a major theme in population ecology. The debate is on the relative merits of density–dependent and density–independent effects. One paradigm (revived by the research on global warming and its relation to long-term population data) states that fluctuations in population densities can often be accounted for by external noise. Several empirical models have been suggested to support this view. We followed this by assuming a given population skeleton dynamics (Ricker dynamics and second-order autoregressive dynamics) topped off with noise composed of low–and high–frequency components. Our aim was to determine to what extent the modulated population dynamics correlate with the noise signal. High correlations (with time–lag 71) were observed with both model categories in the region of stable dynamics, but not in the region of periodic or complex dynamics. This finding is not very sensitive to low–frequency noise. High correlations throughout the entire range of dynamics are only achievable when the impact of the noise is very high. Fitted parameter values of skeleton dynamics modulated with noise are prone to err substantially. This casts doubt as to what degree the underlying dynamics are any more recognizable after being modulated by the external noise.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Ville-Petri Friman; Teppo Hiltunen; Jouni Laakso; Veijo Kaitala
Productivity is predicted to drive the ecological and evolutionary dynamics of predator–prey interaction through changes in resource allocation between different traits. Here we report results of an evolutionary experiment where prey bacteria Serratia marcescens was exposed to predatory protozoa Tetrahymena thermophila in low- and high-resource environments for approximately 2400 prey generations. Predation generally increased prey allocation to defence and caused prey selection lines to become more diverse. On average, prey became most defensive in the high-resource environment and suffered from reduced resource use ability more in the low-resource environment. As a result, the evolution of stronger prey defence in the high-resource environment led to a strong decrease in predator-to-prey ratio. Predation increased temporal variability of populations and traits of prey. However, this destabilizing effect was less pronounced in the high-resource environment. Our results demonstrate that prey resource availability can shape the trade-off allocation of prey traits, which in turn affects multiple properties of the evolving predator–prey system.
Evolution | 2013
Tarmo Ketola; Lauri Mikonranta; Ji Zhang; Kati Saarinen; Anni-Maria Örmälä; Ville-Petri Friman; Johanna Mappes; Jouni Laakso
Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms’ ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species’ invasiveness and virulence.